Welcome to Acta Armamentarii ! Today is Share:

Acta Armamentarii ›› 2018, Vol. 39 ›› Issue (4): 655-663.doi: 10.3969/j.issn.1000-1093.2018.04.004

• Paper • Previous Articles     Next Articles

Ignition Delay Characteristics of DME/H2 Lean Mixtures at Low-to-medium Temperature

XU Yong-hong1, TONG Liang1, SHI Zhi-cheng2,3, ZHANG Hong-guang2,3   

  1. (1.College of Electrical and Mechanical Engineering, Beijing Information Science and Technology University, Beijing 100192, China;2.College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China;3.Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100124,China)
  • Received:2017-08-14 Revised:2017-08-14 Online:2018-05-30

Abstract: To investigate the ignition delay characteristics of DME/H2 mixtures at low-to-medium temperature, ignition delay times of lean DME/H2 mixtures (hydrogen mole fraction in the fuel mixtures of 0%, 50%, 60%, 70%, and 85%) were measured using a rapid compression machine in the compressed temperature range of 628-858 K at compression pressures of 12-22 bars, the equivalence ratios of 0.30- 1.00, and the hydrogen blend ratio of 0%-85%. A kinetics model is built to simulate the ignition process using finite element software Chemkin-Pro. The results show that the addition of H2 to DME mixtures leads to a nonlinear increase in ignition delay time. The inhibition effect of H2 addition is found to be more pronounced at lower compression pressure with H2 mole fraction of more than 60%. It is also observed that lean DME/H2 mixtures show three stage heat release behaviors at lower equivalence ratio of 0.30, i.e., the first stage of low temperature heat release (LTHR) and the second stage of high temperature heat release (HTHR), and the third stage of high temperature heat release. Meanwhile, the three-stage heat release behavior becomes weak as the H2 mole fraction increases. Further chemical kinetic analysis indicates that DME is mainly consumed during LTHR and the first stage of HTHR whereas H2 is mainly consumed during the second stage of HTHR. Key

Key words: rapidcompressionmachine, ignitiondelaytime, dimethylether, hydrogen, three-stageheatrelease

CLC Number: