
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (9): 241001-.doi: 10.12382/bgxb.2024.1001
Previous Articles Next Articles
CHEN Changfa1, WU Jun’an1, GUO Rui1, CUI Hao1, YAN Shuaiyin1, ZHOU Hao2,*(
)
Received:2024-10-31
Online:2025-09-24
Contact:
ZHOU Hao
CLC Number:
CHEN Changfa, WU Jun’an, GUO Rui, CUI Hao, YAN Shuaiyin, ZHOU Hao. Thickness Equivalence Model Based on Serial Neural Network for Explosion Resistance of Radome[J]. Acta Armamentarii, 2025, 46(9): 241001-.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 密度ρ/(g·cm-3) | 1.6 |
| 纵向、横向弹性模量E11,E22/GPa | 55 |
| 厚度方向弹性模量E33/GPa | 7 |
| 面内方向剪切模量G12/GPa | 4.5 |
| 厚度方向剪切模量G13,G23/GPa | 1.8 |
| 泊松比v12 | 0.25 |
| 纤维、基体拉伸强度Xt,Yt/MPa | 890 |
| 纤维、基体压缩强度Xc,Yc/MPa | 300 |
Table 1 Material properties[21]
| 参数 | 数值 |
|---|---|
| 密度ρ/(g·cm-3) | 1.6 |
| 纵向、横向弹性模量E11,E22/GPa | 55 |
| 厚度方向弹性模量E33/GPa | 7 |
| 面内方向剪切模量G12/GPa | 4.5 |
| 厚度方向剪切模量G13,G23/GPa | 1.8 |
| 泊松比v12 | 0.25 |
| 纤维、基体拉伸强度Xt,Yt/MPa | 890 |
| 纤维、基体压缩强度Xc,Yc/MPa | 300 |
| 爆距/m | 冲量/ (Pa·s) | 最大挠度/mm | ||
|---|---|---|---|---|
| FEA结果 | 试验结果 | 误差% | ||
| 1.0 | 109 | 12.22 | 12.90 | 5.3 |
| 0.8 | 154 | 15.55 | 16.68 | 6.8 |
| 0.6 | 219 | 20.61 | 21.10 | 2.3 |
Table 2 Comparison of the experimental and FEA calculated maximum deflections
| 爆距/m | 冲量/ (Pa·s) | 最大挠度/mm | ||
|---|---|---|---|---|
| FEA结果 | 试验结果 | 误差% | ||
| 1.0 | 109 | 12.22 | 12.90 | 5.3 |
| 0.8 | 154 | 15.55 | 16.68 | 6.8 |
| 0.6 | 219 | 20.61 | 21.10 | 2.3 |
| 变量 | 数值 | Pearson相关系数 |
|---|---|---|
| E11/GPa | 45,50,55,60,65 | -0.615 |
| E33/GPa | 5,6,7,8,9 | -0.001 |
| ρ/(g·cm-3) | 1.2,1.4,1.6,1.8,2.0 | -0.723 |
| G12/GPa | 3,4,4.5,5,6 | -0.303 |
| XT/MPa | 700,800,900,1000,1100 | 0 |
Table 3 The results of sensitivity analysis
| 变量 | 数值 | Pearson相关系数 |
|---|---|---|
| E11/GPa | 45,50,55,60,65 | -0.615 |
| E33/GPa | 5,6,7,8,9 | -0.001 |
| ρ/(g·cm-3) | 1.2,1.4,1.6,1.8,2.0 | -0.723 |
| G12/GPa | 3,4,4.5,5,6 | -0.303 |
| XT/MPa | 700,800,900,1000,1100 | 0 |
| 输入变量 | 数值 |
|---|---|
| 比例距离/(m·kg-1/3) | 1.2,1.6,2.0,2.4 |
| 密度/(g·cm-3) | 1.5,1.8,2.1,2.4 |
| 厚度/mm | 2,4,6,8,10 |
| 面内方向弹性模量/GPa | 40,60,80,100 |
Table 4 The values of input variables for FEA model
| 输入变量 | 数值 |
|---|---|
| 比例距离/(m·kg-1/3) | 1.2,1.6,2.0,2.4 |
| 密度/(g·cm-3) | 1.5,1.8,2.1,2.4 |
| 厚度/mm | 2,4,6,8,10 |
| 面内方向弹性模量/GPa | 40,60,80,100 |
| 变量 | D | E11 | ρ | T |
|---|---|---|---|---|
| Pearson系数 | -0.2846 | -0.2481 | -0.0520 | -0.8536 |
Table 5 Pearson correlation coefficient between input variables and maximum deflection
| 变量 | D | E11 | ρ | T |
|---|---|---|---|---|
| Pearson系数 | -0.2846 | -0.2481 | -0.0520 | -0.8536 |
| 玻璃纤维 类型 | ρ/ (g·cm-3) | E11/ GPa | 介电常数ε | 损耗角正切 tanδ |
|---|---|---|---|---|
| E-glass | 1.78 | 48.2 | 4.04 | 0.014 |
| S-glass | 1.74 | 54.7 | 3.44 | 0.014 |
| M-glass | 1.94 | 60.5 | 4.62 | 0.009 |
| D-glass | 1.47 | 31.7 | 3.22 | 0.006 |
| 石英玻璃 | 1.54 | 37.5 | 3.32 | 0.005 |
| 高硅氧玻璃 | 1.61 | 34.3 | 2.94 | 0.012 |
Table 6 Performance of different fiberglass radomes[8]
| 玻璃纤维 类型 | ρ/ (g·cm-3) | E11/ GPa | 介电常数ε | 损耗角正切 tanδ |
|---|---|---|---|---|
| E-glass | 1.78 | 48.2 | 4.04 | 0.014 |
| S-glass | 1.74 | 54.7 | 3.44 | 0.014 |
| M-glass | 1.94 | 60.5 | 4.62 | 0.009 |
| D-glass | 1.47 | 31.7 | 3.22 | 0.006 |
| 石英玻璃 | 1.54 | 37.5 | 3.32 | 0.005 |
| 高硅氧玻璃 | 1.61 | 34.3 | 2.94 | 0.012 |
| 编号 | 比例距离/ (m·kg-1/3) | 试件 | W/mm | ||
|---|---|---|---|---|---|
| 试验结果 | 仿真结果 | 误差/% | |||
| 1 | 1.6 | E-glass | 24.0 | 22.3 | 7.1 |
| 2 | 1.6 | 石英玻璃 | 23.5 | 22.6 | 3.8 |
| 3 | 2.0 | E-glass | 18.5 | 17.6 | 4.9 |
| 4 | 2.0 | 石英玻璃 | 18.5 | 17.8 | 3.8 |
Table 7 Comparison of the maximum deflections of E-glass and quartz glass laminates
| 编号 | 比例距离/ (m·kg-1/3) | 试件 | W/mm | ||
|---|---|---|---|---|---|
| 试验结果 | 仿真结果 | 误差/% | |||
| 1 | 1.6 | E-glass | 24.0 | 22.3 | 7.1 |
| 2 | 1.6 | 石英玻璃 | 23.5 | 22.6 | 3.8 |
| 3 | 2.0 | E-glass | 18.5 | 17.6 | 4.9 |
| 4 | 2.0 | 石英玻璃 | 18.5 | 17.8 | 3.8 |
| [1] |
鲁文·沙维特. 雷达天线罩电磁理论与设计[M].轩立新,译. 北京: 国防工业出版社, 2023.
|
|
|
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
焦晓龙, 徐豫新, 吴宗娅, 等. 活性壳体温压战斗部对相控阵雷达天线的毁伤效应[J]. 兵工学报, 2024, 45(6):1725-1734.
doi: 10.12382/bgxb.2023.0895 |
|
doi: 10.12382/bgxb.2023.0895 |
|
| [7] |
许群, 张明习. 雷达天线罩电性能测试技术[M]. 北京: 航空工业出版社, 2021.
|
|
|
|
| [8] |
轩立新. 雷达天线罩工程[M]. 北京: 航空工业出版社, 2021.
|
|
|
|
| [9] |
曾旭. 典型舰船雷达目标易损性研究[D]. 沈阳: 沈阳理工大学, 2023.
|
|
|
|
| [10] |
郭淼, 袁俊明, 刘玉存, 等. 破片和冲击波对相控阵雷达天线罩的复合毁伤研究[J]. 爆破, 2014, 31(1):114-117,149.
|
|
|
|
| [11] |
熊森才, 吕鑫, 段婧婧, 等. 二维相控阵雷达天线毁伤分析[J]. 导弹与航天运载技术, 2020(5):92-98.
|
|
|
|
| [12] |
张滔韬, 杨玉新, 张二晗, 等. 基于人工神经网络的固体推进剂细观损伤与宏观刚度映射关系[J]. 复合材料学报, 2024, 41(9):4765-4777.
|
|
|
|
| [13] |
闫海, 邓忠民. 基于深度学习的短纤维增强聚氨酯复合材料性能预测[J]. 复合材料学报, 2019, 36(6):1413-1420.
|
|
|
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
赵讯. 导弹雷达罩电性能及结构性能一体化分析[D]. 哈尔滨: 哈尔滨工程大学, 2012.
|
|
|
|
| [26] |
张晓, 李银, 吴琼森, 等. CST仿真设计理论与实践[M]. 北京: 清华大学, 2023.
|
|
|
| [1] | SHI Qi, MAO Yunsheng, SHUI Jinpeng, CHEN Liuyi, LIANG Qiyu, SONG Lifei. Improvement and Optimization of Rectangular Closed-loop Magnetic Array Adsorption Module for Wall-climbing Robots [J]. Acta Armamentarii, 2025, 46(9): 241013-. |
| [2] | HUANG Peiji, PENG Weiwen, LENG Chunjiang, ZHANG Qing, ZHONG Wei. Rapid Prediction of Blast Loading in Dense Urban Building Complex Based on Neural Networks [J]. Acta Armamentarii, 2025, 46(8): 240987-. |
| [3] | CHEN Bin, WANG Song, LIU Xingyu, ZHANG Zhaohui, LI Wuyang. A Human Head Finite Element Model for Blunt Ballistic Impact Injury Assessment [J]. Acta Armamentarii, 2025, 46(8): 241022-. |
| [4] | WANG Yang, FENG Yongxin, QIAN Bo, SONG Bixue. Kurtosis-based Spectrum Sensing Method for Wireless Signals [J]. Acta Armamentarii, 2025, 46(7): 240441-. |
| [5] | ZHEN Hong, XIAO Lijun, DU Chengxin, SONG Weidong. Damage Modes of Ultra-High Molecular Weight Polyethylene Fiber Composite Plates under Ballistic Impact Conditions [J]. Acta Armamentarii, 2025, 46(7): 240725-. |
| [6] | QIN Taotao, JI Siyuan, LEI Lin, ZHENG Zhanfeng. Non-parametric Modelling and Muzzle Velocity Prediction of Multi-stage Induction Coilgun based on PSO-RNN Algorithm [J]. Acta Armamentarii, 2025, 46(7): 240616-. |
| [7] | WANG Kai, ZHENG Mengwei, GONG Hao, LIU Jianhua, ZHAO Youlei, LIU Shaoli. Elastic-plastic Contact Calculation and Sealing Performance Analysis of Metal Sealing Ring [J]. Acta Armamentarii, 2025, 46(6): 240371-. |
| [8] | NI Yingfeng, CHEN Xiaowei. Characteristics of Fragment Cloud Produced by Hypervelocity Impact of Cylindrical Projectile on Stiffened Plate [J]. Acta Armamentarii, 2025, 46(6): 240812-. |
| [9] | WANG Yizhen, YIN Jianping, ZHANG Xuepeng, YI Jianya, LI Xudong. A Prediction Model for Dynamic Penetration of Shaped Charge Jet [J]. Acta Armamentarii, 2025, 46(6): 240932-. |
| [10] | CHEN Yusi, ZHANG Ning, FAN Jun, LI Bing, WANG Bin. A Fast Calculation Method for Acoustic Scattering of Cyclic Symmetric Structures [J]. Acta Armamentarii, 2025, 46(5): 240291-. |
| [11] | GONG Shilong, DANG Jianjun, LI Shaoxing, HUANG Chuang. Optimization Design Method of the Supercavitating Projectile Based on BP Neural Network [J]. Acta Armamentarii, 2025, 46(5): 240496-. |
| [12] | LIU Xinhao, CHEN Bin, YING Wenjian, LI Peitao, WU Shiqian. Multi-scale Feature Interactive Image Dehazing Algorithm Based on Hybrid Architecture [J]. Acta Armamentarii, 2025, 46(5): 240861-. |
| [13] | ZHOU Xun, WANG Hongwu, WANG Xusheng, WANG zheng, QU Junfeng, SUN Mengyong, PAN Jun. Finite Element Modeling of Si3N4 Ceramic Microstructure [J]. Acta Armamentarii, 2025, 46(4): 240407-. |
| [14] | NING Jianguo, WANG Qi, LI Jianqiao. ANN-based Prediction Model for the Initial Velocity of Fragments in a Triangular Prism Directional Charge Structure [J]. Acta Armamentarii, 2025, 46(3): 240346-. |
| [15] | WANG Yimin, YUAN Shusen, LIN Darui, YANG Guolai. Nonlinear Sliding Mode Control Based on Neural Network Compensation for Tank All-electric Bidirectional Stabilizers [J]. Acta Armamentarii, 2025, 46(3): 240421-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||