Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (7): 240651-.doi: 10.12382/bgxb.2024.0651
Previous Articles Next Articles
ZHOU Jie, WANG Liangming*(), FU Jian, WANG Yanqin, GUO Shouyu
Received:
2024-07-30
Online:
2025-08-12
Contact:
WANG Liangming
CLC Number:
ZHOU Jie, WANG Liangming, FU Jian, WANG Yanqin, GUO Shouyu. Research on the Correction Capability of High-spin and Tail-controlled Correction Projectile Based on HBBO-LSTM Network[J]. Acta Armamentarii, 2025, 46(7): 240651-.
Add to citation manager EndNote|Ris|BibTeX
特征名 | 最小值 | 最大值 | 步长 |
---|---|---|---|
射角/(°) | 45 | 51 | 1 |
起控时刻/s | 10 | 89 | 1 |
滚转角/(°) | 0 | 359.5 | 0.5 |
Table 1 Projectile input feature value range
特征名 | 最小值 | 最大值 | 步长 |
---|---|---|---|
射角/(°) | 45 | 51 | 1 |
起控时刻/s | 10 | 89 | 1 |
滚转角/(°) | 0 | 359.5 | 0.5 |
超参数名称 | 范围 | 步长 |
---|---|---|
高斯噪层的标准差 | [0,0.003] | 0.0002 |
LSTM层1神经元数量 | [100,2000] | 20 |
LSTM层1正则化系数 | [0,0.002] | 0.0002 |
Dropout层1丢弃率 | [0,0.5] | 0.1 |
LSTM层2神经元数量 | [100,1500] | 20 |
LSTM层2正则化系数 | [0,0.002] | 0.0002 |
Dropout层2丢弃率 | [0,0.5] | 0.1 |
初始全局学习率 | [0.0001,0.01] | 对数采样 |
批量大小 | [32,256] | 32 |
Table 2 Hyperparameter search space
超参数名称 | 范围 | 步长 |
---|---|---|
高斯噪层的标准差 | [0,0.003] | 0.0002 |
LSTM层1神经元数量 | [100,2000] | 20 |
LSTM层1正则化系数 | [0,0.002] | 0.0002 |
Dropout层1丢弃率 | [0,0.5] | 0.1 |
LSTM层2神经元数量 | [100,1500] | 20 |
LSTM层2正则化系数 | [0,0.002] | 0.0002 |
Dropout层2丢弃率 | [0,0.5] | 0.1 |
初始全局学习率 | [0.0001,0.01] | 对数采样 |
批量大小 | [32,256] | 32 |
层类型 | 层参数 | 层输出形状 |
---|---|---|
高斯噪声层 | 标准差0.0002 | (64,1,7) |
LSTM层1 | 神经元数量1500 | (64,1,1500) |
激活层1 | 激活函数Leaky ReLU | (64,1,1500) |
LSTM层2 | 神经元数量740 | (64,740) |
激活层2 | 激活函数Leaky ReLU | (64,740) |
全连接层 | 神经元数量2 | (64,2) |
Table 3 HBBO-LSTM Model parameters
层类型 | 层参数 | 层输出形状 |
---|---|---|
高斯噪声层 | 标准差0.0002 | (64,1,7) |
LSTM层1 | 神经元数量1500 | (64,1,1500) |
激活层1 | 激活函数Leaky ReLU | (64,1,1500) |
LSTM层2 | 神经元数量740 | (64,740) |
激活层2 | 激活函数Leaky ReLU | (64,740) |
全连接层 | 神经元数量2 | (64,2) |
评估指标 | HBBO-LSTM | LSTM | GRU | BP |
---|---|---|---|---|
射程最大误差/m | 1.684 | 2.679 | 4.540 | 3.615 |
横偏最大误差/m | 1.911 | 2.683 | 4.730 | 5.194 |
MSE/m2 | 0.172 | 0.352 | 0.677 | 0.781 |
MAE/m | 0.328 | 0.465 | 0.634 | 0.682 |
MAPE/% | 0.356 | 0.356 | 0.644 | 0.710 |
Table 4 Model evaluation results
评估指标 | HBBO-LSTM | LSTM | GRU | BP |
---|---|---|---|---|
射程最大误差/m | 1.684 | 2.679 | 4.540 | 3.615 |
横偏最大误差/m | 1.911 | 2.683 | 4.730 | 5.194 |
MSE/m2 | 0.172 | 0.352 | 0.677 | 0.781 |
MAE/m | 0.328 | 0.465 | 0.634 | 0.682 |
MAPE/% | 0.356 | 0.356 | 0.644 | 0.710 |
预测点编号 | 数值积分法 | HBBO-LSTM | |||
---|---|---|---|---|---|
解算时间/s | MAE/m | 解算时间/s | MAE/m | ||
1 | 3.15 | 8.85 | 0.61 | 0.26 | |
2 | 5.48 | 13.49 | 0.77 | 0.29 | |
3 | 10.35 | 15.62 | 0.79 | 0.34 | |
4 | 2.25 | 6.16 | 0.76 | 0.30 | |
5 | 16.80 | 21.23 | 0.81 | 0.34 |
Table 5 Computation time and prediction accuracy
预测点编号 | 数值积分法 | HBBO-LSTM | |||
---|---|---|---|---|---|
解算时间/s | MAE/m | 解算时间/s | MAE/m | ||
1 | 3.15 | 8.85 | 0.61 | 0.26 | |
2 | 5.48 | 13.49 | 0.77 | 0.29 | |
3 | 10.35 | 15.62 | 0.79 | 0.34 | |
4 | 2.25 | 6.16 | 0.76 | 0.30 | |
5 | 16.80 | 21.23 | 0.81 | 0.34 |
[1] |
谢浩怡, 杨国伟, 王全伟, 等. 2维弹道修正技术研究综述[J]. 兵工自动化, 2018, 37(9):66-69.
|
|
|
[2] |
邢炳楠, 杜忠华, 杜成鑫. 二维弹道修正弹及其制导控制技术综述[J]. 国防科技大学学报, 2021, 43(4):53-68.
|
|
|
[3] |
李红云, 申强, 邓子龙. 鸭式布局二维修正双旋弹角运动及转向响应特性分析[J]. 兵工学报, 2024, 45(6):1866-1876.
doi: 10.12382/bgxb.2023.0057 |
doi: 10.12382/bgxb.2023.0057 |
|
[4] |
申强, 仇李良, 蒲文洋, 等. 高旋弹二维修正引信双旋结构气动特性及气动力表征[J]. 北京理工大学学报, 2024, 44(4):359-368.
|
|
|
[5] |
|
[6] |
|
[7] |
郭首邑, 王良明, 傅健, 等. 一种新型后舵尾控修正弹的弹道控制仿真[J]. 兵工学报, 2024, 45(7):2209-2217.
doi: 10.12382/bgxb.2023.0178 |
|
|
[8] |
|
[9] |
王中原, 史金光, 常思江, 等. 弹道修正弹技术发展综述[J]. 弹道学报, 2021, 33(2):1-12.
doi: 10.12115/j.issn.1004-499X(2021)02-001 |
|
|
[10] |
|
[11] |
宋谢恩, 王伟鹏, 丁锋, 等. 某型弹道修正弹落点散布规律研究[J]. 弹道学报, 2021, 33(2):40-46.
doi: 10.12115/j.issn.1004-499X(2021)02-006 |
|
|
[12] |
柯知非, 高敏, 王毅, 等. 旋转弹二维弹道修正组件修正能力影响因素仿真分析[J]. 弹箭与制导学报, 2019, 39(3):21-26.
doi: 10.15892/j.cnki.djzdxb.2019.03.006 |
|
|
[13] |
王磊, 马景权, 张嘉易, 等. 二维修正弹修正能力建模与仿真分析[J]. 弹箭与制导学报, 2021, 41(6):127-131.
doi: 10.15892/j.cnki.djzdxb.2021.06.026 |
|
|
[14] |
|
[15] |
刘颖, 杨鹏飞, 张立军, 等. 前馈神经网络和循环神经网络的鲁棒性验证综述[J]. 软件学报, 2023, 34(7):3134-3166.
|
|
|
[16] |
|
[17] |
任济寰, 吴祥, 薄煜明, 等. 基于增强上下文信息长短期记忆网络的弹道轨迹预测[J]. 兵工学报, 2023, 44(2):462-471.
doi: 10.12382/bgxb.2021.0489 |
doi: 10.12382/bgxb.2021.0489 |
|
[18] |
|
[19] |
韩子鹏, 常思江, 赵子华. 弹箭外弹道学[M]. 北京: 北京理工大学出版社, 2022.
|
|
|
[20] |
|
[21] |
|
[22] |
崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10):3068-3090.
|
|
|
[23] |
张颖. 深度学习模型超参数优化的研究[D]. 北京: 首都经济贸易大学, 2020.
|
|
|
[24] |
|
[25] |
杨泗智, 龚春林, 郝波, 等. 基于落点预测的高旋火箭弹弹道修正算法[J]. 航空学报, 2020, 41(2):323421.
doi: 10.7527/S1000-6893.2019.23421 |
|
[1] | WANG Xiaokang, SHEN Qiang, WANG Hanyu, PU Wenyang, YAN Zexu. Analysis and Compensation of Inertial Navigation External Gimbal Arm Error for the Fuze of Double Spin Ballistic Correction Projectile [J]. Acta Armamentarii, 2025, 46(6): 240514-. |
[2] | WANG Xuan, SHI Zhangsong, SHE Bo, SUN Shiyan, QIN Fenqi. Remaining Life Prediction Method Based on BLSTMN-VAE under Degradation Trend Smoothing Constraint [J]. Acta Armamentarii, 2025, 46(5): 240635-. |
[3] | PANG Hui, WANG Mingxiang, WANG Lei, ZHENG Lizhe. Design of Event Trigger-based Vibration Control for Active Suspension System [J]. Acta Armamentarii, 2024, 45(8): 2698-2711. |
[4] | JI Wen, LI Chunna, JIA Xuyi, WANG Gang, GONG Chunlin. A High-spinning Projectile Aerodynamic Modeling Method Combining System Identification and Transfer Learning [J]. Acta Armamentarii, 2024, 45(7): 2197-2208. |
[5] | ZHAO Wei, HOU Baolin, YAN Shaojun, BAO Dan, LIN Yubin. A Dynamic Model of Interval Uncertainty of Rotational Chain Shell Magazine [J]. Acta Armamentarii, 2024, 45(6): 1991-2002. |
[6] | CHEN Gang, WANG Guoxin, MING Zhenjun, CHEN Wang, SHANG Xiwen, YAN Yan. Armored Vehicle Cluster Trajectory Prediction Method Based on DBSCAN Clustering Algorithm and LSTM Network [J]. Acta Armamentarii, 2024, 45(12): 4295-4310. |
[7] | REN Jihuan, WU Xiang, BO Yuming, WU Panlong, HE Shan. Ballistic Trajectory Prediction Based on Context-enhanced Long Short-Term Memory Network [J]. Acta Armamentarii, 2023, 44(2): 462-471. |
[8] | DING Wei, MING Zhenjun, WANG Guoxin, YAN Yan. Dynamic Prediction Model Based on Multi-level LSTM Network for Multi-agent Attack and Defense Effectiveness [J]. Acta Armamentarii, 2023, 44(1): 176-192. |
[9] | SONG Jiarui, TAO Gang, LI Derun, ZANG Zheng, WU Shaobin, GONG Jianwei. Robust Model Predictive Control for Manned and Unmanned Vehicle Formation Based on Parameter Self-Optimization [J]. Acta Armamentarii, 2023, 44(1): 84-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||