[1] |
DONG S, ZHU F H, CHENG Y, et al. Research of simulation test based on parallel high-speed train systems[C]// Proceedings of 2021 China Automation Congress. Beijing: Chinese Association of Automation, 2021:2790-2795.
|
[2] |
KEWEI C, LIU H B, LANG J Q, et al. Ray-tracking simulation and analysis of propagation for typical scene of high speed maglev[C]// Proceedings of the IEEE 21st International Conference on Communication Technology. Tianjin, China: IEEE, 2021:1063-1067.
|
[3] |
XU W X, LI J J. Research on parallel encryption technology in the emergency platform of high speed railway in china[C]// Proceedings of the 2018 IEEE 4th International Conference on Computer and Communications (ICCC). Chengdu, China: IEEE, 2018: 488-493.
|
[4] |
YERRAPRAGADA A K, EISMAN T, KELLEY B. Physical layer security for beyond 5G: ultra secure low latency communications[J]. IEEE Open Journal of the Communications Society, 2021(2):2232-2242.
|
[5] |
MITEV M, CHORTI A, POOR H V, et al. What physical layer security can do for 6g security[J]. IEEE Open Journal of Vehicular Technology, 2023(4):375-388.
|
[6] |
QIU S, WEI Z K, YU H, et al. Review of physical layer security in molecular internet of nano-things[J]. IEEE Transactions on NanoBioscience, 2024, 23(1): 91-100.
|
[7] |
SODERI S, NICOLA R. 6G networks physical layer security using RGB visible light communications[J]. IEEE Access, 2022(10): 5482-5496.
|
[8] |
WANG J J, HAN G T, LI S Z, et al. A lightweight combined physical layer encryption and authentication scheme for industrial internet of things[J]. IEEE Access, 2024(12): 6961-6970.
|
[9] |
WEI Z X, ZHANG J S, LI W J, et al. 400-Gbps/80-km rate-flexible PCS-64-QAM WDM-CPON with Pseudo-m-QAM chaotic physical layer encryption[J]. Journal of Lightwave Technology, 2023, 41(8): 2413-2424.
|
[10] |
HASAN M M, CHEFFENA M, PETROVIC S. Physical-layer security improvement in MIMO OFDM systems using multilevel chaotic encryption[J]. IEEE Access, 2023(11): 64468-64475.
|
[11] |
CHEN Y, CHEN Z Y, ZHANG Y, et al. Physical layer key generation scheme for MIMO system based on feature fusion autoencoder[J]. IEEE Internet of Things Journal, 2023, 10(6): 14886-14895.
|
[12] |
WAN J, LOPEZ A B. Exploiting wireless channel randomness to generate keys for automotive cyber-physical system security[C]// Proceedings of the ACM/IEEE 7th International Conference on Cyber-Physical Systems. Vienna, Austria: ACM, 2016: 1-10.
|
[13] |
ZHU X J, XU F Y, NOVAK E, et al. Using wireless link dynamics to extract a secret key in vehicular scenarios[j]. IEEE Transactions on Mobile Computing, 2017, 16(7): 2065-2078.
|
[14] |
HU J F, SHI J, MA S, et al. Secrecy analysis for orthogonal time frequency space scheme based uplink LEO satellite communication[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1623-1627.
|
[15] |
ZHANG W T, HUANG Y, HEREDIA-JUESAS J, et al. Software-defined millimeter-wave multistatic radar with space-time-coded orthogonal frequency-division multiplexing[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(3): 1620-1629.
|
[16] |
LI S Y, YUAN W J, WEI Z Q, et al. Cross domain iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2227-2242.
|
[17] |
YUAN W J, WEI Z Q, LI S Y, et al. Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6):1515-1528.
|
[18] |
TEK Y I, DOGUKAN AT, BASAR E. Autoencoder-based enhanced orthogonal time frequency space modulation[J]. IEEE Communications Letters, 2023, 27(10): 2628-2632.
|
[19] |
GE S R, XIE Y T, LIU K H, et al. The use of intelligent vehicles and artificial intelligence in mining operations: ethics, responsibility, and sustainability[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1021-1024.
|
[20] |
HUANG C W, ZHANG Z Q, MAO B F, et al. An overview of artificial intelligence ethics[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(4): 799-819.
|
[21] |
CHANG B, TANG W, YAN X Y, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103-2113.
|
[22] |
CHENG X, DUAN D L, GAO S J, et al. Integrated sensing and communications (ISAC) for vehicular communication networks (VCN)[J]. IEEE Internet of Things Journal, 2022, 9(23): 23441-23451.
|
[23] |
RENZO M, DANUFANE F H. Communication models for reconfigurable intelligent surfaces: from surface electromagnetics to wireless networks optimization[J]. Proceedings of the IEEE, 2022, 110(9): 1164-1209.
|
[24] |
RAO J H, ZHANG Y J, LI Z. A novel reconfigurable intelligent surface for wide-angle passive beamforming[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(12): 5427-5439.
|
[25] |
RODRIGUES D V Q, SINGH T. Efficient power allocation strategies in hybrid active-passive reconfigurable intelligent surfaces[J]. IEEE Communications Letters, 2024, 12(1): 113-117.
|