[1] |
SPRINGER S, GOTTLIEB U, LOZIN M. Spatiotemporal gait parameters as predictors of lower-limboveruse injuries in military training[J]. The Scientific World Journal, 2016, 2016: 5939164.
|
[2] |
FILZAH PG DAMIT D N, SENANAYAKE S M N A, MALIK O A, et al. Instrumented measurement analysis system for soldiers’ load carriage movement using 3-D kinematics and spatio-temporal features[J]. Measurement, 2017, 95: 230-238.
|
[3] |
杨洋, 王亚平, 徐诚, 等. 身背负重对士兵行军步态影响试验研究[J]. 兵工学报, 2016, 37(11): 2050-2057.
doi: 10.3969/j.issn.1000-1093.2016.11.013
|
|
YANG Y, WANG Y P, XU C, et al. Experimental study on the influence of body load on soldiers’ marching gait[J]. Acta Armamentarii, 2016, 37(11): 2050-2057. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2016.11.013
|
[4] |
CHANG M C, LEE B J, JOO N-Y, et al. The parameters of gait analysis related to ambulatory and balance functions in hemiplegic stroke patients: a gait analysis study[J]. BMC Neurology, 2021, 21(1): 38-45.
doi: 10.1186/s12883-021-02072-4
pmid: 33504334
|
[5] |
BOUÇA-MACHADO R, JALLES C, GUERREIRO D, et al. Gait kinematic parameters in Parkinson’s disease: a systematic review[J]. Journal of Parkinson’s Disease, 2020, 10: 843-853.
|
[6] |
ANWARY A R, YU H, CALLAWAY A, et al. Validity and consistency of concurrent extraction of gait features using inertial measurement units and motion capture system[J]. IEEE Sensors Journal, 2021, 21(2): 1625-1634.
|
[7] |
RUDISCH J, JÖLLENBECK T, VOGT L, et al. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters[J]. Gait & Posture, 2021, 85: 55-64.
|
[8] |
LIAO Y L, Vakanski A, XIAN M, et al. A review of computational approaches for evaluation of rehabilitation exercises[J]. Computer Biology and Medicine, 2020, 119: 103687.
|
[9] |
GARCÍA-DE-VILLA S, NEIRA GG, ÁLVAREZ M N, et al. A database with frailty, functional and inertial gait metrics for the research of fall causes in older adults[J]. Scientific Data, 2023, 10: 566.
|
[10] |
LU J Z, GUO Y L, LIU H Q, et al. Gait analysis based on magnetometer and inertial sensors data fusion[J]. IEEE Sensors Journal, 2022, 22(18): 18056-18065.
|
[11] |
ZIJLSTRA W. Assessment of spatio-temporal parameters during unconstrained walking[J]. European Journal of Applied Physiology, 2004, 92: 39-44.
doi: 10.1007/s00421-004-1041-5
pmid: 14985994
|
[12] |
ZIJLSTRA W, HOF A L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking[J]. Gait & Posture, 2003, 18(2): 1-10.
|
[13] |
ZIJLSTRA A, ZIJLSTRA W. Trunk-acceleration based assessment of gait parameters in older persons: a comparison of reliability and validity of four inverted pendulum based estimations[J]. Gait &Posture, 2013, 38(4): 940-944.
|
[14] |
AMINIAN K, NAJAFI B, BÜLA C, et al. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes[J]. Journal of Biomechanics, 2002, 35(5): 689-699.
doi: 10.1016/s0021-9290(02)00008-8
pmid: 11955509
|
[15] |
SALARIAN A, RUSSMANN H, VINGERHOETS F J, et al. Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(8): 1434-1443.
|
[16] |
AMINIAN K, TREVISAN C, NAJAFI B, et al. Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement[J]. Gait & Posture, 2004, 20(1): 102-107.
|
[17] |
LI Q G, YOUNG M, NAING V, et al. Walking speed estimation using a shank-mounted inertial measurement unit[J]. Journal of Biomechanics, 2010, 43(8): 1640-1643.
doi: 10.1016/j.jbiomech.2010.01.031
pmid: 20185136
|
[18] |
MAO Y F, OGATA T, ORA H, et al. Estimation of stride-by-stride spatial gait parameters using inertial measurement unit attached to the shank with inverted pendulum model[J]. Scientific Reports, 2021, 11(1): 1391-1400.
doi: 10.1038/s41598-021-81009-w
pmid: 33446858
|
[19] |
ROMIJNDERS R, WARMERDAM E, HANSEN C, et al. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s Disease patients[J]. Journal of NeuroEngineering and Rehabilitation, 2021, 18(1): 28.
|
[20] |
LEFEBER N, DEGELAEN M, TRUYERS C, et al. Validity and reproducibility of inertial physilog sensors for spatiotemporal gait analysis in patients with stroke[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(9): 1865-1874.
doi: 10.1109/TNSRE.2019.2930751
pmid: 31352347
|
[21] |
GUIMARÃES V, SOUSA I, CORREIA M V. Orientation-invariant spatio-temporal gait analysis using foot-worn inertial sensors[J]. Sensors, 2021, 21(11): 3940-3958.
|
[22] |
CELIK Y, STUART S, WOO W L, et al. Gait analysis in neurological populations: progression in the use of wearables[J]. Medical Engineering & Physics, 2021, 87: 9-29.
|
[23] |
WANG L, SUN Y, LI Q G, et al. Two shank-mounted IMUs-based gait analysis and classification for neurological disease patients[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1970-1976.
|
[24] |
WANG L, SUN Y, LI Q G, et al. Estimation of step length and gait asymmetry using wearable inertial sensors[J]. IEEE Sensors Journal, 2018, 18(9): 3844-3851.
|
[25] |
HAN Y C, WONG K I, MURRAY I. 2-point error estimation algorithm for 3-D thigh and shank angles estimation using IMU[J]. IEEE Sensors Journal, 2018, 18(20): 8525-8531.
|
[26] |
JOCHAM A J, LAIDIG D, GUGGENBERGER B, et al. Measuring highly accurate foot position and angle trajectories with foot-mounted IMUs in clinical practice[J]. Gait & Posture, 2024, 108: 63-69.
|
[27] |
HORI K, MAO Y, ONO Y, et al. Inertial measurement unit-based estimation of foot trajectory for clinical gait analysis[J]. Frontiers in Physiology, 2020, 10: 1530-1541.
|