Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (10): 2932-2943.doi: 10.12382/bgxb.2022.1019
Previous Articles Next Articles
NING Jianguo, YANG Shuai, LI Yuhui, XU Xiangzhao*()
Received:
2022-11-02
Online:
2023-10-30
Contact:
XU Xiangzhao
试件 编号 | 试件 质量/g | 试件尺寸 (长×宽×高)/ mm3 | 抗压 强度/ MPa | 标准抗 压强度/ MPa | 平均抗 压强度/ MPa |
---|---|---|---|---|---|
30-1 | 2288 | 99×99×101 | 26.28 | 24.97 | |
30-2 | 2289 | 99×100×99 | 29.38 | 27.91 | |
30-3 | 2265 | 99×101×99 | 30.91 | 29.36 | |
30-4 | 2242 | 100×100×100 | 29.60 | 28.12 | 29.40 |
30-5 | 2291 | 98×100×100 | 31.87 | 30.28 | |
30-6 | 2230 | 98×102×97 | 29.74 | 28.25 | |
30-7 | 2231 | 100×101×99 | 36.80 | 34.96 | |
30-8 | 2267 | 99×100×100 | 33.01 | 31.36 |
Table 1 Compressive strength of concrete undernormal temperature curing
试件 编号 | 试件 质量/g | 试件尺寸 (长×宽×高)/ mm3 | 抗压 强度/ MPa | 标准抗 压强度/ MPa | 平均抗 压强度/ MPa |
---|---|---|---|---|---|
30-1 | 2288 | 99×99×101 | 26.28 | 24.97 | |
30-2 | 2289 | 99×100×99 | 29.38 | 27.91 | |
30-3 | 2265 | 99×101×99 | 30.91 | 29.36 | |
30-4 | 2242 | 100×100×100 | 29.60 | 28.12 | 29.40 |
30-5 | 2291 | 98×100×100 | 31.87 | 30.28 | |
30-6 | 2230 | 98×102×97 | 29.74 | 28.25 | |
30-7 | 2231 | 100×101×99 | 36.80 | 34.96 | |
30-8 | 2267 | 99×100×100 | 33.01 | 31.36 |
养护天数/d | 质量损失/g | 含水率降幅/% | 抗压强度/MPa |
---|---|---|---|
0 | 0 | 11.67 | |
28(低温) | 0 | 0 | 8.57 |
0 | 0 | 10.25 | |
92 | 4.06 | 11.70 | |
40(常温) | 63 | 2.63 | 13.33 |
66 | 2.79 | 13.61 | |
74 | 3.19 | 14.64 | |
47(常温) | 78 | 3.30 | 14.63 |
95 | 4.08 | 14.50 | |
57(常温) | 121 | 5.33 | 14.68 |
125 | 5.52 | 14.67 | |
147 | 6.17 | 17.99 | |
71(常温) | 141 | 5.95 | 15.82 |
149 | 6.13 | 17.95 | |
167 | 6.62 | 16.50 | |
85(常温) | 180 | 7.62 | 15.43 |
169 | 6.78 | 16.86 | |
99(常温) | 179 | 7.05 | 16.06 |
183 | 7.42 | 17.41 |
Table 2 Variation of specimen parameters under different curing days
养护天数/d | 质量损失/g | 含水率降幅/% | 抗压强度/MPa |
---|---|---|---|
0 | 0 | 11.67 | |
28(低温) | 0 | 0 | 8.57 |
0 | 0 | 10.25 | |
92 | 4.06 | 11.70 | |
40(常温) | 63 | 2.63 | 13.33 |
66 | 2.79 | 13.61 | |
74 | 3.19 | 14.64 | |
47(常温) | 78 | 3.30 | 14.63 |
95 | 4.08 | 14.50 | |
57(常温) | 121 | 5.33 | 14.68 |
125 | 5.52 | 14.67 | |
147 | 6.17 | 17.99 | |
71(常温) | 141 | 5.95 | 15.82 |
149 | 6.13 | 17.95 | |
167 | 6.62 | 16.50 | |
85(常温) | 180 | 7.62 | 15.43 |
169 | 6.78 | 16.86 | |
99(常温) | 179 | 7.05 | 16.06 |
183 | 7.42 | 17.41 |
试验 | E/GPa | σs0/MPa | εm | σm/MPa |
---|---|---|---|---|
T28 | 6.035 | 10.876 | 2.4×10-3 | 12.281 |
T57 | 11.276 | 12.146 | 1.6×10-3 | 15.405 |
T85 | 19.724 | 14.708 | 1.2×10-3 | 17.368 |
Table 3 Parameters of concrete materials after subjecting to different lengths of curing
试验 | E/GPa | σs0/MPa | εm | σm/MPa |
---|---|---|---|---|
T28 | 6.035 | 10.876 | 2.4×10-3 | 12.281 |
T57 | 11.276 | 12.146 | 1.6×10-3 | 15.405 |
T85 | 19.724 | 14.708 | 1.2×10-3 | 17.368 |
试验 | a | b | η | h | np |
---|---|---|---|---|---|
T28 | 102.34 | 2.69 | 3.74×10-5 | 5.78×103 | |
T57 | 192.56 | 2.03 | 2.25×10-5 | 6.12×103 | 2.1 |
T85 | 289.47 | 1.78 | 2.18×10-5 | 6.47×103 |
Table 4 Parameters in the concrete constitutive model
试验 | a | b | η | h | np |
---|---|---|---|---|---|
T28 | 102.34 | 2.69 | 3.74×10-5 | 5.78×103 | |
T57 | 192.56 | 2.03 | 2.25×10-5 | 6.12×103 | 2.1 |
T85 | 289.47 | 1.78 | 2.18×10-5 | 6.47×103 |
[1] |
doi: 10.1016/j.conbuildmat.2021.124419 URL |
[2] |
doi: 10.1016/j.conbuildmat.2022.126725 URL |
[3] |
doi: 10.1016/j.conbuildmat.2022.127529 URL |
[4] |
贾彬, 陶俊林, 李正良, 等. 高温混凝土动态力学性能的SHPB试验研究[J]. 兵工学报, 2009, 30(增刊2): 208-212.
|
|
|
[5] |
doi: 10.1016/j.conbuildmat.2022.126596 URL |
[6] |
doi: 10.1016/j.jobe.2022.104906 URL |
[7] |
施劲松, 许金余, 任韦波, 等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报, 2014, 35(5): 703-710.
doi: 10.3969/j.issn.1000-1093.2014.05.019 |
|
|
[8] |
doi: 10.1016/j.conbuildmat.2022.128668 URL |
[9] |
doi: 10.1016/j.coldregions.2022.103570 URL |
[10] |
doi: 10.1016/j.conbuildmat.2022.129276 URL |
[11] |
时旭东, 李亚强, 李俊林, 等. 不同超低温温度区间冻融循环作用混凝土受压强度试验研究[J]. 工程力学, 2020, 37(4): 153-163.
|
|
|
[12] |
时旭东, 汪文强, 田佳伦. 不同强度等级混凝土遭受超低温冻融循环作用的受压强度试验研究[J]. 工程力学, 2020, 37(2): 211-220.
|
|
|
[13] |
doi: 10.1016/j.conbuildmat.2004.04.033 URL |
[14] |
doi: 10.1016/S0008-8846(02)00744-5 URL |
[15] |
doi: 10.1016/S0008-8846(02)00745-7 URL |
[16] |
康耕新, 颜海春, 张亚栋, 等. 接触爆炸下混凝土墩破坏效应试验与数值模拟[J/OL]. 兵工学报, 2022(2022-08-15). https://doi.org/10.12382/bgxb.2022.0397.
|
|
|
[17] |
doi: 10.1016/j.addma.2022.102821 URL |
[18] |
宁建国, 刘海峰, 商霖. 强冲击荷载作用下混凝土材料动态力学特性及本构模型[J]. 中国科学, 2008, 38(6): 759-772.
|
|
|
[19] |
doi: 10.1016/j.cemconcomp.2014.07.011 URL |
[20] |
doi: 10.1016/j.engfracmech.2022.108401 URL |
[1] | LIU Ju, ZHANG Guokai, WANG Zhen, YAO Jian, LI Jie, YU Siyuan, JI Yuguo. Experimental Study on the Damage Characteristics and Laws of RC Beams under Close-in Blast Loading of Thermobaric Explosives [J]. Acta Armamentarii, 2024, 45(3): 864-874. |
[2] | KANG Gengxin, YAN Haichun, ZHANG Yadong, LIU Mingjun, HAO Likai. Experimental and Numerical Investigation on the Damage Effects of Concrete Pier under Contact Explosion [J]. Acta Armamentarii, 2024, 45(1): 144-155. |
[3] | ZHOU Guangpan, WANG Rong, WANG Mingyang, DING Jianguo, ZHANG Guokai. Experiment and Numerical Simulation of Explosion Resistance Performance of Main Girder of Self-anchored Suspension Bridge Coated with Polyurea [J]. Acta Armamentarii, 2023, 44(S1): 9-25. |
[4] | LI Xu, YUE Songlin, QIU Yanyu, WANG Mingyang, DENG Shuxin, LIU Niannian. Experimental Study on Interaction between Bubble and Concrete Composite Slab in Near-field Underwater Explosion [J]. Acta Armamentarii, 2023, 44(S1): 79-89. |
[5] | ZHANG Congkun, ZHANG Zhonghao, WANG Wei, LI Lei, HE Xiang. Experimental Study on Bending Performance of Ultra-high Strength Reinforced Concrete Beams under Static Loading [J]. Acta Armamentarii, 2023, 44(S1): 107-116. |
[6] | ZHANG Zhonghao, WANG Wei, ZHANG Guokai, WANG Zhen, WU Gu. Study on Deterioration and Damage Performance of Concrete at Different High Temperatures [J]. Acta Armamentarii, 2023, 44(S1): 152-159. |
[7] | WANG Jia, YIN Jianping, LI Xudong, YI Jianya, WANG Zhijun. Construction of Scaled Model of Reinforced Concrete Column Based on Dimensional Analysis [J]. Acta Armamentarii, 2023, 44(S1): 189-195. |
[8] | LIU Hongfu, HUANG Fenglei, BAI Zhiling, DUAN Zhuoping. Theoretical Model of Oblique Penetration of Rigid Projectiles into Concrete Targets at Attack Angles [J]. Acta Armamentarii, 2023, 44(8): 2381-2390. |
[9] | WANG Guijun, WU Yanqing, HOU Xiao, HUANG Fenglei. Research on the Viscoelastic Constitutive Model of Composite Solid Propellant Containing Damage Based on Mesostructure [J]. Acta Armamentarii, 2023, 44(12): 3696-3706. |
[10] | XIA Liu, WU Weichao, PAN Aigang, WANG Yafei, WANG Qiang, YAN Shen. A Comparison of Damage Effectivenesses of Reinforced Concrete Beams by Single-point and Three-point Array Damage Patterns [J]. Acta Armamentarii, 2023, 44(12): 3851-3861. |
[11] | LI Meng, WU Haijun, DONG Heng, REN Guang, ZHANG Peng, HUANG Fenglei. Machine Learning-based Models for Predicting the Penetration Depth of Concrete [J]. Acta Armamentarii, 2023, 44(12): 3771-3782. |
[12] | QI Xiaopeng, ZHANG Jie, ZHAO Tingting, WANG Zhiyong, WANG Zhihua. The Failure Patterns of Concrete Slabs with Different Aggregate Gradations under Contact Blast Loading [J]. Acta Armamentarii, 2023, 44(12): 3641-3653. |
[13] | ZHAO Zehu, LI Xianglong, HU Qiwen, WANG Jianguo. Dynamic Mechanical Properties and Damage Constitutive Model of Copper-bearing Garnet-biotite Schist [J]. Acta Armamentarii, 2023, 44(12): 3805-3814. |
[14] | SONG Shuizhou, REN Huilan, NING Jianguo. Acoustic Emission Parameters in the Damage Process of Steel Fiber Reinforced Concrete under Mixed Loading [J]. Acta Armamentarii, 2022, 43(8): 1881-1891. |
[15] | ZHANG Zhendong, GAO Yuan, MA Dawei, ZHU Zhongling, WANG Xi. Simulation of the Dynamic Response of Cement Concrete Pavement under Multiple Cold Launch Loads [J]. Acta Armamentarii, 2022, 43(7): 1706-1717. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 267
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 353
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||