Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (12): 3247-3264.doi: 10.12382/bgxb.2021.0670
• Comprehensive Review • Previous Articles
JIAO Feng1, MA Xiaosan1, BIE Wenbo2, NIU Ying1, NIU Shen1
Online:
2022-06-27
CLC Number:
JIAO Feng, MA Xiaosan, BIE Wenbo, NIU Ying, NIU Shen. Research Status and Prospects of Electrochemical Grinding Technology[J]. Acta Armamentarii, 2022, 43(12): 3247-3264.
Add to citation manager EndNote|Ris|BibTeX
[1] LAN S L, JIAO F. Modeling of heat source in grinding zone and numerical simulation for grinding temperature field [J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11/12): 4715-4730. [2] 梁志强, 黄迪青, 周天丰, 等. 齿轮钢18Cr2Ni4WA磨削烧伤实验及仿真预测研究 [J]. 兵工学报, 2017, 38(10): 1995-2001. LIANG Z Q, HUANG D Q, ZHOU T F, et al. Experiment and simulation prediction of grinding burn of gear steel 18Cr2Ni4WA [J]. Acta Armamentarii, 2017, 38(10): 1995-2001. (in Chinese) [3] YIN J F, BAI Q, GOEL S, et al. An analytical model to predict the depth of sub-surface damage for grinding of brittle materials[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 33: 454-464. [4] BADGER J , MURPHY S, O'DONNELL G E. Big-and-dull or small-and-sharp: a comparison of specific energy, wheel wear, surface-generation mechanisms and surface characteristics when grinding with Al2O3 and CBN to achieve a given surface roughness [J]. Journal of Materials Processing Technology, 2021, 288:116825. [5] WU Y, ZHAO B, ZHU X S. Modeling of material-removal in workpiece lateral ultrasonic vibration grinding of fine-crystalline zirconia ceramics[J]. Key Engineering Materials, 2006, 315/316(4): 304-308. [6] 张洪丽. 超声振动辅助磨削加工机理及理论研究 [M]. 北京: 中国水利水电出版社, 2018. ZHANG H L. Research on mechanism and theory of ultrasonic vibration assisted grinding [M]. Beijing: China Water & Power Press, 2018. (in Chinese) [7] 高霁, 刘庆扬, 马晓芳, 等. 电火花磨削加工蜂窝环的热物性参数研究及表面温度场仿真分析[J]. 兵工学报, 2013, 34(11): 1437-1441. GAO J, LIU Q Y, MA X F, et al. Research on thermal physical parameters and surface temperature field of EDG machining honeycomb ring [J]. Acta Armamentarii, 2013, 34(11): 1437-1441. (in Chinese) [8] SONIA P. Introduction of hybrid machining: fabrication and experimental investigation of electrochemical grinding on surface roughness[J]. Materials Today: Proceedings, 2021, 44:300-304. [9] SFANTSIKOPOULOS M M, NOBLE C F. Electrochemical surface grinding [J]. Production Engineer, 1976, 55(5): 245-249. [10] 孔黄海. 超声辅助电解-磨削高效加工小孔技术研究 [D]. 威海: 山东大学(威海), 2019. KONG H H. Study on ultrasonic assisted electrochemical grinding of small-holes with high efficiency [D]. Weihai: Shandong University (Weihai), 2019. (in Chinese) [11] MAKSOUD T M A, BROOKS A J. Electrochemical grinding of ceramic form tooling [J]. Journal of Materials Processing Technology, 1995, 55(2):70-75. [12] ZHANG X Q, HUANG R, LIU K, et al. Suppression of diamond tool wear in machining of tungsten carbide by combining ultrasonic vibration and electrochemical processing [J]. Ceramics International, 2018, 44(4): 4142-4153. [13] LI S S, WU Y B, NOMURA M, et al. Fundamental machining characteristics of ultrasonic-assisted electrochemical grinding of Ti-6Al-4V [J]. Journal of Manufacturing Science and Engineering, 2018, 140(7): 071009. [14] ZHU D, ZENG Y B, XU Z Y, et al. Precision machining of small holes by the hybrid process of electrochemical removal and grinding [J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 247-250. [15] 白基成, 刘晋春, 郭永丰, 等. 特种加工[M]. 第6版. 北京: 机械工业出版社, 2014. BAI J C, LIU J C, GUO Y F, et al. Non-traditional machining[M]. 6th ed. Beijing: China Machine Press, 2014. (in Chinese) [16] 曹凤国. 电化学加工[M]. 北京: 化学工业出版社, 2014. CAO F G. Electrochemical machining [M]. Beijing: Chemical Industry Press, 2014. (in Chinese) [17] QU N S, ZHANG Q L, FANG X L, et al.Experimental investigation on electrochemical grinding of Inconel 718[J]. Procedia CIRP, 2015, 35:16-19. [18] 焦锋, 李成龙, 牛赢, 等. 砂轮修整技术研究现状与展望 [J]. 中国机械工程, 2021, 32(20): 2435-2448. JIAO F, LI C L, NIU Y, et al. Review and prospect of grinding wheel dressing technique[J]. China Mechanical Engineering, 2021, 32(20): 2435-2448. (in Chinese) [19] 伍俏平, 王煜, 赵恒, 等. 基于多层钎焊金刚石砂轮在线电解修整技术的超细晶硬质合金精密磨削研究[J]. 机械工程学报, 2018, 54(21): 212-220. WU Q P, WANG Y, ZHAO H, et al. Precision grinding of ultra-fine cemented carbide based on electrolytic in-process dressing of a multi-layer brazed diamond wheel[J]. Journal of Mechanical Engineering, 2018, 54(21): 212-220. (in Chinese) [20] SFANTSIKOPOULOS M M, NOBLE C F. Vertical spindle electrochemical surface grinding[C]∥Proceedings of the Twelfth International Machine Tool Design and Research Conference. London, UK: Macmillan, 1971: 265-270. [21] 董志鹏. 复杂型面端面电解磨削加工技术应用基础研究 [D]. 南京: 南京航空航天大学, 2016. DONG Z P. Applied fundamental research on electrochemical grinding of complex end surface[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese) [22] WANG F, ZHAO J S, KANG M. Investigation of inner-jet electrochemical face grinding of thin-walled rotational parts[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(2): 3269-3287. [23] 王峰, 赵建社, 干为民, 等. 薄壁回转结构平动电解磨削试验研究 [J]. 东南大学学报(自然科学版), 2016, 46(2): 277-282. WANG F, ZHAO J S, GAN W M, et al. Experimental study on electrochemical grinding of thin-wall revolution structure with circular translational moving [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(2): 277-282. (in Chinese) [24] 沈峥嵘, 徐正扬, 朱荻. 镍基高温合金K424 电解磨削复合打孔技术研究[C]∥第14届全国特种加工学术会议论文集. 哈尔滨: 哈尔滨工业大学出版社, 2011: 556-560. SHEN Z Y, XU Z Y, ZHU D. The study on electrochemical grinding drilling of cast nickel-based superalloy[C]∥Proceedings of the 14th National Conference on special processing. Harbin, China: Harbin Institute of Technology Press, 2011: 556-560. (in Chinese) [25] KONG H H, LIU Y, ZHU X M, et al. Study on ultrasonic assisted electrochemical drill-grinding of superalloy [J]. Chemosensors, 2020, 8(3): 62-74. [26] 张欣耀, 朱荻, 曾永彬, 等. 精密微小孔的电解-磨削复合扩孔加工技术研究[J]. 中国机械工程, 2010, 21(8): 973-977. ZHANG X Y, ZHU D, ZENG Y B, et al. An investigation into precision micro-hole enlargement by using electrochemical grinding[J]. China Mechanical Engineering, 2010, 21(8): 973-977. (in Chinese) [27] ZHU X M, LIU Y, ZHANG J H, et al. Ultrasonic-assisted electrochemical drill-grinding of small holes with high-quality [J]. Journal of Advanced Research, 2020, 23: 151-161. [28] NIU S, QU N S, YUE X K, et al. Effect of tool-sidewall outlet hole design on machining performance in electrochemical mill-grinding of Inconel 718[J]. Journal of Manufacturing Processes, 2019, 41: 10-22. [29] NIU S, QU N S, LI H S. Investigation of electrochemical mill-grinding using abrasive tools with bottom insulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1/2/3/4): 1371-1382. [30] CURTIS D T, SOO S L, ASPINWALL D K, et al. Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points [J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 173-176. [31] 干为民, 徐家文. 五轴联动数控展成电解磨削整体叶轮的控制方法 [J]. 东南大学学报(自然科学版), 2002, 32(2): 228-231. GAN W M, XU J W. Control method on 5-axis numerically controlled electrochemical contour evolution grinding of integral impeller[J]. Journal of Southeast University (Natural Science Edition), 2002, 32(2):228-231. (in Chinese) [32] GAN W M, ZHU H S, SU C, et al. Electrochemical grinding of unparallel-ruled surface[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2006, 22(3): 216-223. [33] 葛永成. 高温合金机匣电解加工技术基础研究[D]. 南京: 南京航空航天大学, 2018. GE Y C. Basic research on electrochemical machining for superalloy casing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese) [34] GE C Y, ZHU Z W, WANG D Y, et al. Study on material removal mechanism of electrochemical deep grinding[J]. Journal of Materials Processing Technology, 2019, 271: 510-519. [35] 干为民, 徐家文. 展成电解磨削加工的机理研究[J]. 机械科学与技术, 2006, 25(6): 712-715. GAN W M, XU J W. Research on mechanism of electrochemical contour evolution grinding[J]. Mechanical Science and Technology for Aerospace Engineering, 2006, 25(6): 712-715. (in Chinese) [36] LI H S, FU S X, NIU S, et al. Simulation and experimental investigation of electrochemical mill-grinding of GH4169 alloy [J]. International Journal of Electrochemical Science, 2018(13): 6608-6625. [37] 葛永成, 朱增伟, 朱永伟. 深切电解磨削加工技术概述[C]∥第18届 全国特种加工学术会议论文集. 苏州: 中国机械工程学会特种加工分会, 2019: 126. GE Y C, ZHU Z W, ZHU Y W. Overview of electrochemical deep grinding technology[C]∥Proceedings of the 18th National Conference on special processing. Suzhou: Special Processing Institution of CMES, 2019: 126. (in Chinese) [38] GE C Y, ZHU Z W, ZHU Y W. Electrochemical deep grinding of cast nickel-base superalloys[J]. Journal of Manufacturing Processes, 2019, 47: 291-296. [39] NIU S, QU N S, FU S X, et al. Investigation of inner-jet electrochemical milling of nickel-based alloy GH4169/Inconel 718 [J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(5/6/7/8): 2123-2132. [40] NOBLE C F, DAVIES B J. Electro-Mechanical Action in Peripheral Electrochemical Grinding [J]. CIRP Annals-Manufacturing Technology, 1983, 32(1): 123-127. [41] ATKINSON J. Workpiece surface hardness as an indicator of process regime in peripheral electrochemical grinding [C]∥Proceedings of the 35th International MATADOR Conference. London, UK: Springer-Verlag, 2007: 89-94. [42] TEHRANI A F, ATKINSON J. Overcut in pulsed electrochemical grinding[J]. Proceedings of the Institution of Mechanical Engineers Part B—Journal of Engineering Manufacture, 2000, 214(4): 259-269. [43] PATEL D S, JAIN V K, RAMKUMAR J. Electrochemial Grinding[M]∥JAIN V K. Nanofinishing Science and Technology: Basic and Advanced Finishing and Polishing Processes. Boca Raton, FL, US: CRC Press, 2016:321-352. [44] LI H S, FU S X, ZHANG Q L, et al. Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy[J]. Chinese Journal of Aeronautics, 2018, 31(3): 608-616. [45] LI H S, NIU S, ZHANG Q L, et al. Investigation of material removal in inner-jet electrochemical grinding of GH4169 alloy [J]. Scientific Reports, 2017, 7(1):3482. [46] KACZMAREK J, ZACHWIEJA T . Investigations on the material removal rate by electrochemical grinding of cutting tool materials in dependence on the properties of the grinding wheel[J]. International Journal of Machine Tool Design and Research, 1966, 6(1):1-13. [47] GOSWAMI R N, MITRA S, SARKAR S. Experimental investigation on electrochemical grinding (ECG) of alumina-aluminum interpenetrating phase composite [J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(7/8):729-741. [48] UPAK M, ZABORSKI S. Simulation of energy consumption in electrochemical grinding of hard-to-machine materials [J]. Journal of Applied Electrochemistry, 2009, 39: 101-106. [49] 朱树敏, 陈远龙. 电化学加工技术 [M]. 北京: 化学工业出版社, 2006. ZHU S M, CHEN Y L. Electrochemical machining technology [M]. Beijing: Chemical Industry Press, 2006. (in Chinese) [50] 孙博宇, 马锦晖. 电解加工去除焊层多场耦合仿真及试验研究 [J]. 表面技术, 2021, 50(6): 347-355. SUN B Y, MA J H. Multi-physics coupling simulation and experiment study on electrochemical machining to remove welding layer [J]. Surface Technology, 2021, 50(6): 347-355. (in Chinese) [51] GAIKWAD K S, JOSHI S S. Modeling of material removal rate in micro-ECG process [J]. Journal of Manufacturing Science and Engineering, 2008, 130(3):876-877. [52] ATKINSON J, NOBLE C F. The surface finish resulting from peripheral electrochemical grinding [C]∥Proceedings of the Twenty-second International Machine Tool Design and Research Conference. London, UK: Macmillan, 1982: 371-378. [53] GEDDAM A, NOBLE C F. An assessment of the influence of some wheel variables in peripheral electrochemical grinding [J]. International Journal of Machine Tool Design and Research, 1971, 11(1):1-12. [54] GEDDAM A, NOBLE C F. Peripheral electrochemical grinding with a formed wheel [C]∥Proceedings of the Thirteenth International Machine Tool Design and Research Conference. London, UK: Macmillan, 1973: 315-321. [55] ATKINSON J, NOBLE C F. Residual stresses in workpieces after peripheral electrochemical grinding [C]∥Proceedings of the Nineteenth International Machine Tool Design and Research Conference. London, UK: Macmillan, 1979: 525-532. [56] ZABORSKI S, UPAK M, POROAS'U2 D. Wear of cathode in abrasive electrochemical grinding of hardly machined materials [J]. Journal of Materials Processing Technology, 2004, 149(1/2/3): 414-418. [57] ILHAN R E, SATHYANARAYANAN G, STORER R H, et al. Off-line multiresponse optimization of electrochemical surface grinding by a multi-objective programming method[J]. International Journal of Machine Tools and Manufacture, 1992, 32(3):435-451. [58] ILHAN R E, SATHYANARAYANAN G, STORER R H, et al. Modelling of electrochemical grinding process for minimum overcut [C]∥Proceedings of the 4th International Grinding Conference Proceedings. Dearborn, US: SME, 1990: 537. [59] ROY S, BHATTACHARYYA A, BANERJEE S. Analysis of effect of voltage on surface texture in electrochemical grinding by autocorrelation function [J]. Tribology International, 2007, 40(9): 1387-1393. [60] HASALIK A, AYDA?瘙塁 U. A comparative study of surface integrity of Ti-6Al-4V alloy machined by EDM and AECG [J]. Journal of Materials Processing Technology, 2007, 190(1/2/3):173-180. [61] BHATTACHARYYA B, MALAPATI M, MUNDA J. Experimental study on electrochemical micromachining [J]. Journal of Materials Processing Technology, 2005, 169(3):485-492. [62] 徐振哲, 金洙吉, 姜冠楠, 等. 控制浅小孔电解加工深度的研究 [J]. 现代制造工程, 2019(8): 68-73. XU Z Z, JIN Z J, JIANG G N, et al. Study on controlling the depth of electrochemical machining of shallow holes [J]. Modern Manufacturing Engineering, 2019(8): 68-73. (in Chinese) [63] LIU Y, QU N S. Experimental and numerical investigations of reducing stray corrosion and improving surface smooth in macro electrolyte jet machining titanium alloys [J]. Journal of The Electrochemical Society, 2020, 167(8): 083502. [64] KOZAK J, SKRABALAK G. Analysis of Abrasive Electrochemical Grinding Process (AECG) [C]∥Proceedings of the World Congress on Engineering. London, UK: WCE, 2014: 1147-1152. [65] DAVYDOV A, KOZAK J. High rate of electrochemical shaping [M]. Moscow, Russia: Nauka, 1990. [66] MING P M, ZHU D, XU Z Y. Electrochemical grinding for unclosed internal cylinder surface [J]. Key Engineering Materials, 2008, 359-360: 360-364. [67] SAPRE P, MALL A, JOSHI S S. Analysis of electrolytic flow effects in micro-electrochemical grinding [J]. Journal of Manufacturing Science and Engineering, 2013, 135(1): 011012. [68] RAHI D K, DUBEY A K, GUPTA N. Analysis of electrolyte flow effects in surface micro-ECG [C]∥Proceedings of Advances in Manufacturing and Industrial Engineering. Singapore: Springer, 2021: 371-479. [69] 黄绍服, 曾永彬, 朱荻, 等. 阴极高速旋转对微细电化学钻孔加工精度的影响 [J]. 重庆大学学报, 2010, 33(12): 34-39, 46. HUANG S F, ZENG Y B, ZHU D, et al. Influence of high speed rotating cathode on the precision of micro-electrochemical drilling hole [J]. Journal of Chongqing University, 2010, 33(12): 34-39, 46. (in Chinese) [70] LI J, LI H S, HU X Y, et al. Simulation analysis and experimental validation of cathode tool in electrochemical mill-grinding of Ti6Al4V [J]. Applied Sciences, 2020, 10(6): 1941. [71] BOSE G K, JANA T K, MITRA S. Identification of the significant process parameters by Taguchi methodology during electrochemical grinding of Al2O3/Al-interpenetrating phase composite [J]. International Journal of Computational Materials Science and Surface Engineering, 2011, 4(3): 232-246. [72] BOSE G K. Selecting significant process parameters of ECG process using Fuzzy-MCDM technique [J]. International Journal of Materials Forming and Machining Processes, 2015, 2(1): 38-53. [73] BOSE G K. Multi objective optimization of ECG process under fuzzy environment [J]. Multidiscipline Modeling in Materials and Structures, 2015, 11(3): 350-371. [74] BOSE G K, PAIN P. Surface response methodology approach for multi-objective optimization during electrochemical grinding of Al2O3/Al interpenetrating phase composite [C]∥Proceedings of Handbook of Research on Manufacturing Process Modeling and Optimization Strategies. Hershey, PA, US: IGI Global, 2017: 162-192. [75] MOLLA K Z, MANNA A. Optimization of electrochemical grinding parameters for effective finishing of hybrid Al/(Al2O3+ZrO2) MMC [J]. International Journal of Surface Engineering and Interdisciplinary Materials Science, 2013, 1(2): 35-45. [76] PURI A B, BANERJEE S. Multiple-response optimisation of electrochemical grinding characteristics through response surface methodology [J]. The International Journal of Advanced Manufacturing Technology, 2013, 64(5/6/7/8): 715-725. [77] YADAV S K, YADAV S K S. Multi-objective optimization of electrochemical cut-off grinding process of Ti-6Al-4V using PCA based grey relational analysis [J]. Materials Today: Proceedings, 2020, 44: 3089-3099. [78] GITANJALI V, NITHYA P, PANDIARAJAN P, et al. Performance machinability through electrochemical grinding of strenx steel [J]. Materials Today: Proceedings, 2021, 45: 2479-2481. [79] MOGILNIKOV V A, CHMIR M Y, TIMOFEEV Y S, et al. Diamond-ECM grinding of sintered hard alloys of WC-Ni [J]. Procedia CIRP, 2016, 42:143-148. [80] MOGILNIKOV V A, CHMIR M Y, TIMOFEEV Y S, et al. Diamond-ECM grinding of sintered hard alloys of WC-Ni [J]. Procedia CIRP, 2013, 6:408-410. [81] ZHANG X J, LIU Y, XU F. The study of the simulation of low rigidity, variable cross-section shaft electrolytic grinding [J]. Advanced Materials Research, 2013, 668: 465-469. [82] 刘亮. 电解磨削加工硬质合金涂层材料的试验研究 [D]. 大连: 大连理工大学, 2016. LIU L. Experimental study on electrochemical grinding of cemented carbide coating materials [D]. Dalian: Dalian University of Technology, 2016. (in Chinese) [83] 刘亮, 金洙吉, 姜冠楠, 等. 基于热喷涂材料电化学极化特性的电解磨削液研究 [J]. 现代制造工程, 2017(4): 1-5. LIU L, JIN Z J, JIANG G N, et al. Study on electrolytic grinding fluid based on electrochemical polarization characteristics of thermal sprayed materials [J]. Modern Manufacturing Engineering, 2017(4): 1-5. (in Chinese) [84] 林允森, 董世运, 田欣利, 等. 激光熔覆硬韧材料齿面的电解磨削 [J]. 中国表面工程, 2009, 22(2): 53-55, 60. LIN Y S, DONG S Y, TIAN X L, et al. Electrochemical grinding of hard and ductile tooth surfaces fabricated by laser cladding [J]. China Surface Engineering, 2009, 22(2): 53-55, 60. (in Chinese) [85] 李竹梅, 杨志勇. 煤矿机械零件高硬度热喷涂修复层电解磨削加工 [J]. 煤矿机械, 2011, 32(10): 131-132. LI Z M, YANG Z Y. Electrolytic grinding to cut Ni-Cr-B-Si thermal spraying coating of coal mechanical components [J]. Coal Mine Machinery, 2011, 32(10): 131-132. (in Chinese) [86] 徐波, 干为民. 基于 UG 软件直纹面整体叶轮的数控电解机械复合加工方法研究 [J]. 制造技术与机床, 2013(1): 62-65. XU B, GAN W M. Research on processing method of NC electrochemical mechanical machining ruled surface impeller based on UG soft [J]. Manufacturing Technology & Machine Tool, 2013(1): 62-65. (in Chinese) [87] BHUYAN B K, GARG C, GUPTA L. Design and development of tabletop electrochemical grinding setup [J]. Materials Today: Proceedings, 2019. [88] 肖雄, 赵建社, 王福元, 等. 电解磨削机床集成控制系统的设计 [J]. 机床与液压, 2014, 42(19): 89-93. XIAO X, ZHAO J S, WANG F Y, et al. Design of integrated control system for electrochemical grinding machine tool [J]. Machine Tool & Hydraulics, 2014, 42(19): 89-93. (in Chinese) [89] 干为民, 徐家文, 云乃彰, 等. 4轴联动数控展成电解磨床的研制 [J]. 制造技术与机床, 2002(3): 19-21. GAN W M, XU J W, YUN N Z, et al. Development of 4-axis numerically controlled electrochemical contour evolution grinding machine tool [J]. Manufacturing Technology & Machine Tool, 2002(3): 19-21. (in Chinese) [90] 干为民, 褚辉生, 丁仕燕, 等. 五轴联动数控电解磨床的设计 [J]. 制造技术与机床, 2009(3): 40-43. GAN W M, ZHU H S, DING S Y, et al. Design of five-axis NC electrochemical grinding machine tool [J]. Manufacturing Technology & Machine Tool, 2009(3): 40-43. (in Chinese) [91] WU Y B, LI S S, NOMURA M, et al. Ultrasonic assisted electrolytic grinding of titanium alloy Ti-6Al-4V [J]. International Journal of Nanomanufacturing, 2017, 13(2): 152-160. [92] 张建华, 张勤河, 贾志新. 复合加工技术 [M]. 北京: 化学工业出版社, 2005. ZHANG J H, ZHANG Q H, JIA Z X. Compound machining technology [M]. Beijing: Chemical Industry Press, 2005. (in Chinese) [93] LAUWERS B, KLOCKE F, KLINK A, et al. Hybrid processes in manufacturing [J]. CIRP Annals-Manufacturing Technology, 2014, 63(2): 561-583. [94] 尹洋, 刘勇, 周利平. 高精度硬质合金套类零件的加工方法 [J]. 现代制造工程, 2004(7): 72-74. YIN Y, LIU Y, ZHOU L P. Study on the machining method for carbide bush-type workpiece with high precision [J]. Modern Manufacturing Engineering, 2004(7): 72-74. (in Chinese) [95] 孙磊, 董晨晨, 吕冰海, 等. 基于双电解作用的表面磨削设备:CN203495765U[P]. 2014-03-26. SUN L, DONG C C, L B H, et al. A surface grinding equipment based on dualelectrolytic: CN203495765U[P].2014-03-26. (in Chinese) [96] 王旭, 赵萍, 吕冰海, 等. 滚动轴承工作表面超精密加工技术研究现状 [J]. 中国机械工程, 2019, 30(11): 1301-1309. WANG X, ZHAO P, L B H, et al. Research status of ultra-precision machining technologies for working surfaces of rolling bearings [J]. China Mechanical Engineering, 2019, 30(11): 1301-1309. (in Chinese) [97] YEHIA H M, HAKIM M, EL-ASSAL A. Effect of the Al2O3 powder addition on the metal removal rate and the surface roughness of the electrochemical grinding machining [J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2020, 234(12): 1538-1548. [98] LI S S, WU Y B, NOMURA M. Fundamental investigation of ultrasonic assisted pulsed electrochemical grinding of Ti-6Al-4V [J]. Materials Science Forum, 2016, 874: 279-284. [99] WU Y B, NOMURA M, FENG Z J, et al. Modeling of grinding force in constant-depth-of-cut ultrasonically assisted grinding [J]. Materials Science Forum, 2004, 471/472: 101-107. [100] 米召阳, 梁志强, 王西彬, 等. 基于光滑粒子流体动力学法单颗磨粒超声辅助磨削陶瓷材料的磨削力仿真研究 [J]. 兵工学报, 2015, 36(6): 1067-1073. MI Z Y, LIANG Z Q, WANG X B, et al. A simulation investigation on grinding forces in ultrasonic assisted grinding of ceramics with single abrasive grain by using SPH method [J]. Acta Armamentarii, 2015, 36(6): 1067-1073. (in Chinese) [101] LI S S, WU Y B, YAMAMURA K, et al. Improving the grindability of titanium alloy Ti-6Al-4V with the assistance of ultrasonic vibration and plasma electrolytic oxidation [J]. CIRP Annals-Manufacturing Technology, 2017, 66(1): 345-348. [102] THANH D V, OANH P T, HUONG D T, et al. Ultrasonic-assisted cathodic electrochemical discharge for graphene synthesis [J]. Ultrasonics Sonochemistry, 2017, 34: 978-983. [103] 孟翔宇. 超声振动辅助电解磨削GH3536技术研究 [D]. 济南: 山东大学, 2020. MENG X Y. The research on ultrasonic vibration assisted electrochemical grinding GH3536 [D]. Jinan: Shandong University, 2020. (in Chinese) [104] GOTO D, MAEDE Y, IWATSUKA K, et al. Study on ultrasonic cavitation-assisted micro-end mill milling[J]. Key Engineering Materials, 2015, 656/657: 381-386. [105] GUO C, ZHU X J, LIU G D. Study on ultrasonic cavitaion field of power ultrasonic honing[J]. Advanced Materials Research, 2013, 690/691/692/693: 3284-3288. [106] 马空军, 吴晓霞, 张华余, 等. 超声空化引起界面湍动促进的传质机理[J]. 应用声学, 2013, 32(5): 348-353. MA K J, WU X X, ZHANG H Y, et al. Mechanisms of enhanced mass transfer induced by interfacial turbulence under ultrasonic cavitation [J]. Applied Acoustics, 2013, 32(5): 348-353. (in Chinese) |
[1] | LI Xingshan, L Yushan, WANG Yuchen. The Strategy of Grinding Dimpled Surface for Reducing Friction Force by Grinding Wheel with Ordered Abrasive Grain Clusters [J]. Acta Armamentarii, 2021, 42(3): 633-639. |
[2] | JI Shiming, QIU Wenbin, ZENG Xi, XI Fengfei, QIU Lei, ZHENG Qianqian, SHI Meng. Analysis of Micromechanical Characteristics of Softness Consolidation Abrasives [J]. Acta Armamentarii, 2019, 40(5): 1068-1076. |
[3] | LIANG Zhi-qiang, HUANG Di-qing, ZHOU Tian-feng, LI Hong-wei, QIAO Zhi, WANG Xi-bin, LIU Xin-li. Experiment and Simulation Prediction of Grinding Burn of Gear Steel 18Cr2Ni4WA [J]. Acta Armamentarii, 2017, 38(10): 1995-2001. |
[4] | HU De-jin. Precision Generated Grinding Method and Its Technology of Large Diameter SiC Aspheric Surface [J]. Acta Armamentarii, 2016, 37(12): 2340-2346. |
[5] | LIANG Zhi-qiang, TIAN Meng, WANG Qiu-yan, WANG Xi-bin,. Simulation Investigation on Crack Initiation and Propagation in Ultrasonic Assisted Grinding of Ceramics Material [J]. Acta Armamentarii, 2016, 37(5): 895-902. |
[6] | MI Zhao-yang, LIANG Zhi-qiang, WANG Xi-bin, ZHOU Tian-feng, ZHAO Wen-xiang, TIAN Meng. A Simulation Investigation on Grinding Forces in Ultrasonic Assisted Grinding of Ceramics with Single Abrasive Grain byUsing SPH Method [J]. Acta Armamentarii, 2015, 36(6): 1067-1073. |
[7] | HU De-jin. Study of Method of Sphericity Evaluation and Error On-line Compensation for Large Spherical Precision Grinding [J]. Acta Armamentarii, 2015, 36(6): 1082-1088. |
[8] | DONG Zhi-guo, YA Gang, LI Yuan-zong. Material Removal Rate Model of High Viscoelastic Fluid Abrasive Finishing [J]. Acta Armamentarii, 2013, 34(12): 1555-1561. |
[9] | BAO Yong-jie, GAO Hang, LIANG Yan-de, ZHU Guo-ping. Modeling and Experimental Research on Drilling Temperature Field of Carbon Fiber/ Epoxy Reinforced Composites [J]. Acta Armamentarii, 2013, 34(7): 846-852. |
[10] | CAI Lan-rong, RUAN Wen-yu, HU De-jin, LI Min. The Application of Fractal Theory in Electrical Discharge Truing/ Dressing Diamond Grinding Wheels [J]. Acta Armamentarii, 2013, 34(7): 853-857. |
[11] | SU Chong, DING Jiang-min1, XV Li1, LI Ming-gao2. Cutting Characteristics of Single CBN Abrasive Grain and Micromechanics Analysis of WorkpieceMaterial Deformation Behavior [J]. Acta Armamentarii, 2012, 33(4): 425-431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||