[1] |
蒋亚强, 杨皓瑜, 黄继军, 等. 复合固体推进剂黏合剂研究进展[J]. 中国胶粘剂, 2021, 30(12):55-70.
|
|
JIANG Y Q, YANG H Y, HUANG J J, et al. Research progress of composite solid propellant binders[J]. China Adhesives, 2021, 30(12):55-70. (in Chinese)
|
[2] |
吴世曦, 张天福, 周重洋, 等. 新型含能材料在丁羟复合推进剂中的应用进展[J]. 含能材料, 2019, 27(4):348-355.
|
|
WU S X, ZHANG T F, ZHOU C Y, et al. Recent advances on applications of new energetic ingredients in HTPB composite solid propellants[J]. Chinese Journal of Energetic Materials, 2019, 27(4):348-355. (in Chinese)
|
[3] |
SHANKAR R M, ROYTK, JANAT. Terminal functionalized hydroxyl-terminated polybutadiene: an energetic binder for propellant[J]. Journal of Applied Polymer Science, 2009, 114(2): 732-741.
|
[4] |
COLCLOUGHME, DESAIH, MILLARRW, et al. Energetic polymers as binders in composite propellants and explosives[J]. Polymers for Advanced Technologies, 1994, 5(9): 554-560.
|
[5] |
ELLIAHAD. Direct conversing of epichlorohydrin to glycidyl azide polymer: US4891438[P]. 1990.
|
[6] |
张鑫. 高增塑高能固体推进剂力学性能研究[D]. 西安: 航天动力技术研究院, 2019.
|
|
ZHANG X. Study on the mechanical properties of high plasticization and high-energy solid propellants[D]. Xi’an: Academy of Aerospace Solid Propulsion Technology, 2019. (in Chinese)
|
[7] |
李欢. 二氟氨基类含能粘合剂的合成及性能研究[D]. 南京: 南京理工大学, 2015.
|
|
LI H. Study on synthesis and properties of difluoroamino energetic binders[D]. Nanjing: Nanjing University of Science and Technology, 2015. (in Chinese)
|
[8] |
CHENG T Z. Review of novel energetic polymers and binders-high energy propellant ingredients for the new space race[J]. Designed Monomers and Polymers, 2019, 22(1): 54-65.
|
[9] |
VANDENBERG E J. Polyethers containing azidomethyl side chains: US3645917DA[P]. 1972-02-29.
|
[10] |
GAYATHRI S, RESHMI S. Nitrato functionalized polymers for high energy propellants and explosives:recent advances[J]. Polymers for Advanced Technologies, 2017, 28(12):1539-1550.
|
[11] |
袁璟, 蔺向阳, 彭洋, 等. 光固化含能粘合剂的设计与合成[J]. 兵工学报, 2023, 44(7):2023-2032.
doi: 10.12382/bgxb.2022.0315
|
|
YUAN J, LIN X Y, Peng Y, et al. Design and synthesis of light-curable energetic binders[J]. Acta Armamentarii, 2023, 44(7):2023-2032. (in Chinese)
doi: 10.12382/bgxb.2022.0315
|
[12] |
闫镒腾, 白森虎, 薛金强, 等. GAP的合成与化学改性研究进展[J]. 含能材料, 2023, 31(2):190-200.
|
|
YAN Y T, BAI S H, XUE J Q, et al. Progress in the synthesis and chemical modification of glycidyl azide polymer[J]. Chinese Journal of Energetic Materials, 2023, 31(2):190-200. (in Chinese)
|
[13] |
TALAWAR M B, SIVABALAN R, MUKUNDAN T, et al. Environmentally compatible next generation green energetic materials(GEMs)[J]. Journal of Hazardous Materials, 2009, 161(2/3); 589-607.
|
[14] |
PONTIUS H, BOHN M, ANIOL J. Stability and compatibility of a new curing agent for binders applicable with and evaluated by heat generation rate measurements[C]// Proceedings of the 39th International Annual Conference of ICT.Karlsruhe, Germany: 2008:129.
|
[15] |
范家珂. 基于点击化学的GAP基复合交联体系力学性能研究[D]. 太原: 中北大学, 2022.
|
|
FAN J K. Research on mechanical properties of GAP based composite crosslinking system based on click chemistry[D]. Taiyuan: North University of China, 2022. (in Chinese)
|
[16] |
TOMASZ J, AGNIESZKA S, AGATA WJ, et al. Glycidyl azide polymer and its derivatives-versatile binders for explosives and pyrotechnics: tutorial review of recent progress[J]. Molecules, 2019, 24(24): 4475.
|
[17] |
ARAYA-MARCHENA M, ST-CHARLES J C, DUBOIS C. Investigations on non-isocyanate based reticulation of glycidyl azide pre-polymers[J]. Propellants, Explosive, Pyrotechnics, 2019, 44(6): 769-775.
|
[18] |
李辉, 赵凤起, 于倩倩, 等. 点击化学在三唑固化体系及固体推进剂中的研究进展[J]. 固体火箭技术, 2015, 38(1):73-78.
|
|
LI H, ZHAO F Q, YU QQ, et al. Progress of click chemistry on triazole curing system and solid rocket propellant[J]. Journal of Solid Rocket Technology, 2015, 38(1):73-78. (in Chinese)
|
[19] |
胡文. 含氨酯结构的Huisgen反应固化交联材料体系的结构设计与性能调控[D]. 重庆: 西南大学, 2021.
|
|
HU W. Structure design and property control of Huisgen reaction curing crosslinking material system containing urethane segments[D]. Chongqing: Southwest University, 2021. (in Chinese)
|
[20] |
HU C, GUO X, JING Y H, et al. Structure and mechanical properties of crosslinked glycidyl azide polymers via click chemistry as potential binder of solid propellant[J]. Journal of Applied Polymer Science, 2014, 131(16):40636.
|
[21] |
GABRRIENKO A A, MOROZOV E V, SUBRAMANI V, et al. Chemical visualization of asphaltenes aggregation processes studied in situ with ATR-FTIR spectroscopic imaging and NMR imaging[J]. Journal of Physical Chemistry C, 2015, 119(5): 150123100456000.
|
[22] |
薛佳. 基于在线红外光谱技术的唑类含能材料精准合成方法研究[D]. 西安: 西安石油大学, 2020.
|
|
XUE J. Research on precise synthesis method of azoles energetic materials based on online infrared spectroscopy[D]. Xi’an: Xi’an Shiyou University, 2020. (in Chinese)
|
[23] |
MAMAHAFMQHHA C A. Benzenesulfonamide-thiazole system bearing an azide group: synthesis and evaluation of its optical nonlinear responses[J]. Optik, 2022, 265:169477.
|
[24] |
郑入滔, 牛学伟, 王丽丽, 等. 2,6-二硝基对二苄醇聚叠氮缩水甘油醚聚氨酯合成及与熔铸炸药的分子动力学模拟[J]. 武汉理工大学学报, 2023, 45(8):33-40,47.
|
|
ZHENG R T, NIU X W, WANG L L, et al. Synthesis of polyurethane with 2,6-dinitro-p-dibenzyl alcoholpolyazide glycidyl ether and molecular dynamics simulation with cast explosives[J]. Journal of Wuhan University of Technology, 2023, 45(8):33-40,47. (in Chinese)
|
[25] |
董慧茹. 仪器分析[M]. 北京: 化学工业出版社, 2016.
|
|
DONG H R. Instrumental analysis[M]. Beijing: Chemical Industry Press, 2016. (in Chinese)
|