[1] |
王芳, 王海晏, 寇添, 等. 多维特征点空间的红外弱小目标检测方法[J]. 应用光学, 2020, 41(6):1268-1276.
doi: 10.5768/JAO202041.0606002
|
|
WANG F, WANG H Y, KOU T, et al. Multi-dimensional feature point space infrared dim target detection method[J]. Journal of Applied Optics, 2020, 41(6):1268-1276. (in Chinese)
doi: 10.5768/JAO202041.0606002
|
[2] |
牛畅, 尹奎英, 黄银和. 无人机对地目标自动检测与跟踪技术[J]. 应用光学, 2020, 41(6): 1153-1160.
doi: 10.5768/JAO202041.0601003
|
|
NIU C, YIN K Y, HUANG Y H. Automatic target detecting and tracking technology based on UAV ground target images[J]. Journal of Applied Optics, 2020, 41(6): 1153-1160. (in Chinese)
doi: 10.5768/JAO202041.0601003
|
[3] |
杜鹏飞, 李小勇, 高雅丽. 多模态视觉语言表征学习研究综述[J]. 软件学报, 2021, 32(2): 327-348.
|
|
DU P F, LI X Y, GAO Y L. Survey on multimodal visual language representation learning[J]. Journal of Software, 2021, 32(2): 327-348. (in Chinese)
|
[4] |
KANG B Y, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Changshu, China: IEEE, 2019: 8420-8429.
|
[5] |
梁杰, 任君, 李磊, 等. 基于典型几何形状精确回归的机场跑道检测方法[J]. 兵工学报, 2020, 41(10): 2045-2054.
|
|
LIANG J, REN J, LI L, et al. Airport runway detection algorithm based on accurate regression of typical geometric shapes[J]. Acta Armamentarii, 2020, 41(10): 2045-2054. (in Chinese)
|
[6] |
WANG Y X, RAMANAN D, HEBERT M. Meta-learning to detect rare objects[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 9924-9933.
|
[7] |
ZHANG G J, LUO Z P, CUI K W, et al. Meta-DETR: image-level few-shot detection with inter-class correlation Exploitation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12832-12843.2, DOI: 10.1109/TPAMI.2022.3195735.
|
[8] |
VILALTA R, DRISSI Y. A perspective view and survey of meta-learning[J]. Artificial Intelligence Review, 2002, 18(2):77-95.
doi: 10.1023/A:1019956318069
URL
|
[9] |
WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1):1-40.
doi: 10.1186/s40537-015-0036-x
URL
|
[10] |
HAN G X, HUANG S Y, MA J W J, et al. Meta faster R-CNN:towards accurate few-shot object detection with attentive feature alignment[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Reston, VA,US:AIAA, 2022, 36(1): 780-789.
|
[11] |
REN S Q, HE K M, GIRSHICK R, et al. Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
doi: 10.1109/TPAMI.2016.2577031
URL
|
[12] |
QIAO L M, ZHAO Y X, LI Z Y, et al. DeFRCN:Decoupled faster R-CNN for few-shot object detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris, France: IEEE, 2021: 8681-8690.
|
[13] |
WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, US: IEEE, 2018: 1451-1460.
|
[14] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]// Proceedings of the 14th European Conference on Computer Vision. Amsterdam,the Netherlands: Springer, 2016: 21-37.
|
[15] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Lyon, France: IEEE, 2016: 779-788.
|
[16] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago,Chile:IEEE, 2015:1440-1448.
|
[17] |
WU J X, LIU S T, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]// Proceedings of the 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020: 456-472.
|
[18] |
YAN X P, CHEN Z, XU A, et al. Towards general solver for instance-level low-shot learning[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 9577-9586.
|
[19] |
WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection:arXiv:2003.06957[R]. Ithaca, NY, US: Cornell University, 2020:2003.06957.
|
[20] |
SUN B, LI B H, CAI S C, et al. Few-shot object detection via contrastive proposal encoding[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Paris, France: IEEE, 2021: 7352-7362.
|
[21] |
LI B H, YANG B Y, LIU C, et al. Beyond max-margin: class margin equilibrium for few-shot object detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, US: IEEE, 2021: 7359-7368.
|
[22] |
CHEN L C, PAPANDROU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
doi: 10.1109/TPAMI.2017.2699184
URL
|
[23] |
EVERINGHAM M, COOL L V, WILLIAMS C K I, et al. The pascal visual object classes(VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
doi: 10.1007/s11263-009-0275-4
URL
|
[24] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]// Proceedings of the 13rd European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 740-755.
|
[25] |
RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
doi: 10.1007/s11263-015-0816-y
URL
|