| [1] | CHEN D, FENG H B, LI J H. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chemical Reviews, 2012, 112(11):6027-6053.  doi: 10.1021/cr300115g    
																																																	pmid: 22889102
 | 
																													
																						| [2] | GEORGAKILAS V, OTYEPKA M, BOURLINOS A B, et al. Functionalization of graphene:covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews, 2012, 112(11):6156-6214. | 
																													
																						| [3] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.  doi: 10.1126/science.1102896    
																																																	pmid: 15499015
 | 
																													
																						| [4] | GORGOLIS G, GALIOTIS C. Graphene aerogels:a review[J]. 2D Materials, 2017, 4(3): 032001. | 
																													
																						| [5] | SUN H Y, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560. | 
																													
																						| [6] | LI J H, LI J Y, MENG H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. Journal of Materials Chemistry A, 2014, 2(9): 2934-2941. | 
																													
																						| [7] | LIU X, CUI J S, SUN J B, et al. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2[J]. RSC Advances, 2014, 4(43): 22601-22605. | 
																													
																						| [8] | XIAO L, WU D Q, HAN S, et al. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3764-3769. | 
																													
																						| [9] | WU Z S, YANG S B, SUN Y, et al. 3D Nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(22):9082-9085. | 
																													
																						| [10] | SUI Z Y, MENG Q H, ZHANG X T, et al. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification[J]. Journal of Materials Chemistry, 2012, 22(18):8767-8771. | 
																													
																						| [11] | ZHOU S, JIANG W, WANG T H, et al. Highly hydrophobic, compressible, and magnetic polystyrene/Fe3O4/graphene aerogel composite for oil-water separation[J]. Industrial & Engineering Chemistry Research, 2015, 54(20):5460-5467. | 
																													
																						| [12] | WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40):14067-14069.  doi: 10.1021/ja1072299    
																																																	pmid: 20860374
 | 
																													
																						| [13] | WANG S W, WANG Z P, FUTAMURA R, et al. Highly microporous-graphene aerogel monolith of unidirectional honeycomb macro-textures[J]. Chemical Physics Letters, 2017, 673: 38-43. | 
																													
																						| [14] | DONG L, CHEN Z X, ZHAO X X, et al. A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water[J]. Nature Communications, 2018, 9(1):76.  doi: 10.1038/s41467-017-02580-3    
																																																	pmid: 29311547
 | 
																													
																						| [15] | SHAO G F, HANAOR D A H, SHEN X D, et al. Freeze casting: from low-dimensional building blocks to Aligned porous structures—areview of novel materials, methods, and applications[J]. Advanced Materials, 2020, 32(17):1907176. | 
																													
																						| [16] | LÜ L X, ZHANG P P, XU T, et al. Ultrasensitive pressure sensor based on an ultralight sparkling graphene block[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22885-22892. | 
																													
																						| [17] | JUNG S M, MAFRA D L, LIN C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance[J]. Nanoscale, 2015, 7(10):4386-4393.  doi: 10.1039/c4nr07564a    
																																																	pmid: 25682978
 | 
																													
																						| [18] | LI X H, LIU P F, LI X F, et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J]. Carbon, 2018, 140:624-633. | 
																													
																						| [19] | QIU L, LIU J Z, CHANG S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications, 2012, 3(1):1-7. | 
																													
																						| [20] | SUI Z Y, ZHANG X T, LEI Y, et al. Easy and green synthesis of reduced graphite oxide-based hydrogels[J]. Carbon, 2011, 49(13): 4314-4321. | 
																													
																						| [21] | AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram[J]. International Journal of Impact Engineering, 2001, 25(5):455-472. | 
																													
																						| [22] | PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431. | 
																													
																						| [23] | YAMAGUCHI I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 1981, 14(11): 1270-1273. | 
																													
																						| [24] | WILSON P W, HENEGHAN A F, HAYMET A D J. Ice nucleation in nature: supercooling point(SCP) measurements and the role of heterogeneous nucleation[J]. Cryobiology, 2003, 46(1):88-98. | 
																													
																						| [25] | LANGER J S, MÜLLER-KRUMBHAAR H. Theory of dendritic growth—I. elements of a stability analysis[J]. Acta Metallurgica, 1978, 26(11):1681-1687. | 
																													
																						| [26] | LANGER J S, MÜLLER-KRUMBHAAR H. Theory of dendritic growth—II. Instabilities in the limit of vanishing surface tension[J]. Acta Metallurgica, 1978, 26(11):1689-1695. | 
																													
																						| [27] | BAHRAMI A, SIMON U, SOLTANI N, et al. Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash[J]. Green Chemistry, 2017, 19(1): 188-195. | 
																													
																						| [28] | BAI H, CHEN Y, DELATTRE B, et al. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients[J]. Science Advances, 2015, 1(11):e1500849. | 
																													
																						| [29] | NELSON I, OGDEN T A, AL KHATEEB S, et al. Freeze-casting of surface-magnetized iron(II,III) oxide particles in a uniform static magnetic field generated by a helmholtz coil[J]. Advanced Engineering Materials, 2019, 21(3):1801092-1801103. |