[1] |
CHEN D, FENG H B, LI J H. Graphene oxide: preparation, functionalization, and electrochemical applications[J]. Chemical Reviews, 2012, 112(11):6027-6053.
doi: 10.1021/cr300115g
pmid: 22889102
|
[2] |
GEORGAKILAS V, OTYEPKA M, BOURLINOS A B, et al. Functionalization of graphene:covalent and non-covalent approaches, derivatives and applications[J]. Chemical Reviews, 2012, 112(11):6156-6214.
|
[3] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
doi: 10.1126/science.1102896
pmid: 15499015
|
[4] |
GORGOLIS G, GALIOTIS C. Graphene aerogels:a review[J]. 2D Materials, 2017, 4(3): 032001.
|
[5] |
SUN H Y, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18):2554-2560.
|
[6] |
LI J H, LI J Y, MENG H, et al. Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J]. Journal of Materials Chemistry A, 2014, 2(9): 2934-2941.
|
[7] |
LIU X, CUI J S, SUN J B, et al. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2[J]. RSC Advances, 2014, 4(43): 22601-22605.
|
[8] |
XIAO L, WU D Q, HAN S, et al. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3764-3769.
|
[9] |
WU Z S, YANG S B, SUN Y, et al. 3D Nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(22):9082-9085.
|
[10] |
SUI Z Y, MENG Q H, ZHANG X T, et al. Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification[J]. Journal of Materials Chemistry, 2012, 22(18):8767-8771.
|
[11] |
ZHOU S, JIANG W, WANG T H, et al. Highly hydrophobic, compressible, and magnetic polystyrene/Fe3O4/graphene aerogel composite for oil-water separation[J]. Industrial & Engineering Chemistry Research, 2015, 54(20):5460-5467.
|
[12] |
WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40):14067-14069.
doi: 10.1021/ja1072299
pmid: 20860374
|
[13] |
WANG S W, WANG Z P, FUTAMURA R, et al. Highly microporous-graphene aerogel monolith of unidirectional honeycomb macro-textures[J]. Chemical Physics Letters, 2017, 673: 38-43.
|
[14] |
DONG L, CHEN Z X, ZHAO X X, et al. A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water[J]. Nature Communications, 2018, 9(1):76.
doi: 10.1038/s41467-017-02580-3
pmid: 29311547
|
[15] |
SHAO G F, HANAOR D A H, SHEN X D, et al. Freeze casting: from low-dimensional building blocks to Aligned porous structures—areview of novel materials, methods, and applications[J]. Advanced Materials, 2020, 32(17):1907176.
|
[16] |
LÜ L X, ZHANG P P, XU T, et al. Ultrasensitive pressure sensor based on an ultralight sparkling graphene block[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22885-22892.
|
[17] |
JUNG S M, MAFRA D L, LIN C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance[J]. Nanoscale, 2015, 7(10):4386-4393.
doi: 10.1039/c4nr07564a
pmid: 25682978
|
[18] |
LI X H, LIU P F, LI X F, et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J]. Carbon, 2018, 140:624-633.
|
[19] |
QIU L, LIU J Z, CHANG S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications, 2012, 3(1):1-7.
|
[20] |
SUI Z Y, ZHANG X T, LEI Y, et al. Easy and green synthesis of reduced graphite oxide-based hydrogels[J]. Carbon, 2011, 49(13): 4314-4321.
|
[21] |
AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram[J]. International Journal of Impact Engineering, 2001, 25(5):455-472.
|
[22] |
PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431.
|
[23] |
YAMAGUCHI I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 1981, 14(11): 1270-1273.
|
[24] |
WILSON P W, HENEGHAN A F, HAYMET A D J. Ice nucleation in nature: supercooling point(SCP) measurements and the role of heterogeneous nucleation[J]. Cryobiology, 2003, 46(1):88-98.
|
[25] |
LANGER J S, MÜLLER-KRUMBHAAR H. Theory of dendritic growth—I. elements of a stability analysis[J]. Acta Metallurgica, 1978, 26(11):1681-1687.
|
[26] |
LANGER J S, MÜLLER-KRUMBHAAR H. Theory of dendritic growth—II. Instabilities in the limit of vanishing surface tension[J]. Acta Metallurgica, 1978, 26(11):1689-1695.
|
[27] |
BAHRAMI A, SIMON U, SOLTANI N, et al. Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash[J]. Green Chemistry, 2017, 19(1): 188-195.
|
[28] |
BAI H, CHEN Y, DELATTRE B, et al. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients[J]. Science Advances, 2015, 1(11):e1500849.
|
[29] |
NELSON I, OGDEN T A, AL KHATEEB S, et al. Freeze-casting of surface-magnetized iron(II,III) oxide particles in a uniform static magnetic field generated by a helmholtz coil[J]. Advanced Engineering Materials, 2019, 21(3):1801092-1801103.
|