兵工学报 ›› 2024, Vol. 45 ›› Issue (7): 2270-2281.doi: 10.12382/bgxb.2023.0537
收稿日期:
2023-05-30
上线日期:
2023-07-25
通讯作者:
基金资助:
ZHANG Jiahao, GUO Mengmeng, ZHOU Sheng, YU Qingbo*()
Received:
2023-05-30
Online:
2023-07-25
摘要:
为揭示活性横向增强弹(Penetrator with Enhanced Lateral Effect,PELE)的靶后横向增强机理,开展活性PELE冲击钢靶毁伤效应实验,在钢靶后设置效应铝靶,得到不同前置钢靶厚度条件下的穿孔毁伤情况。基于点火增长模型建立活性PELE冲击爆燃反应过程的两步仿真分析模型。综合实验和仿真对活性PELE在780m/s速度条件下冲击6~20mm厚度范围内钢靶的靶后横向增强效应进行讨论,从效应靶毁伤、芯体反应、波相互作用及壳体破片飞散4个方面进行深入分析。分析结果表明:仿真分析模型有效模拟了活性PELE冲击靶板的爆燃反应过程;靶板厚度对活性PELE在效应靶上的穿孔散布尺寸影响显著,随着靶板厚度的增加,活性PELE的靶后横向增强效应先增大后减小;活性芯体的爆燃反应释能使壳体最大径向速度提高了40%以上。
中图分类号:
张甲浩, 郭萌萌, 周晟, 余庆波. 活性横向增强弹靶后横向效应实验与数值模拟[J]. 兵工学报, 2024, 45(7): 2270-2281.
ZHANG Jiahao, GUO Mengmeng, ZHOU Sheng, YU Qingbo. Experimental and Numerical Research on Behind-plate Enhanced Lateral Effect of Reactive PELE[J]. Acta Armamentarii, 2024, 45(7): 2270-2281.
壳体 长度 Ls/mm | 壳体 厚度 Hs/mm | 壳体 外径 RO/mm | 壳体 内径 RI/mm | 芯体 长度 LI/mm | 垫块 长度 LT/mm |
---|---|---|---|---|---|
68.5 | 4.5 | 25 | 16 | 60 | 4 |
表1 活性PELE弹体尺寸
Table 1 Structural parameters of reactive PELE
壳体 长度 Ls/mm | 壳体 厚度 Hs/mm | 壳体 外径 RO/mm | 壳体 内径 RI/mm | 芯体 长度 LI/mm | 垫块 长度 LT/mm |
---|---|---|---|---|---|
68.5 | 4.5 | 25 | 16 | 60 | 4 |
参数 | 材料 | ||||
---|---|---|---|---|---|
35CrMnSiA | 4340钢 | 2A12 | 钨合金 | PTFE/Al | |
A/MPa | 1327 | 910 | 195 | 1070 | 8.044 |
B/MPa | 1186 | 586 | 230 | 165 | 250.6 |
n | 0.0034 | 0.26 | 0.31 | 0.11 | 1.8 |
c | 0.017 | 0.014 | 0.42 | 0.0028 | 0.4 |
m | 1.27 | 1.03 | 2.20 | 1 | 1 |
Tm/K | 1775 | 1795 | 775 | 1723 | 500 |
D1 | 2 | -0.8 | 0.22 | 0 | 0.05 |
D2 | 0 | 2.1 | 0.12 | 0.27 | 2.00 |
D3 | 0 | -0.5 | 2.8 | -3.4 | 2.00 |
D4 | 0 | 0.002 | — | — | 0.002 |
D5 | 0 | 0.61 | — | — | 0.61 |
表2 部分Johnson-Cook模型参数
Table 2 Main Johnson-Cook model parameters
参数 | 材料 | ||||
---|---|---|---|---|---|
35CrMnSiA | 4340钢 | 2A12 | 钨合金 | PTFE/Al | |
A/MPa | 1327 | 910 | 195 | 1070 | 8.044 |
B/MPa | 1186 | 586 | 230 | 165 | 250.6 |
n | 0.0034 | 0.26 | 0.31 | 0.11 | 1.8 |
c | 0.017 | 0.014 | 0.42 | 0.0028 | 0.4 |
m | 1.27 | 1.03 | 2.20 | 1 | 1 |
Tm/K | 1775 | 1795 | 775 | 1723 | 500 |
D1 | 2 | -0.8 | 0.22 | 0 | 0.05 |
D2 | 0 | 2.1 | 0.12 | 0.27 | 2.00 |
D3 | 0 | -0.5 | 2.8 | -3.4 | 2.00 |
D4 | 0 | 0.002 | — | — | 0.002 |
D5 | 0 | 0.61 | — | — | 0.61 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
a/MPa | 4.7355 | xp1 | 50.466801 |
Fr | 1.7271 | r1/MPa | 2.293712×10-5 |
r3 | 7.7099×10-5 | r6 | 51.54 380 |
Fq | 11224 | Em | 16.735001 |
E1 | 1.0029 | Cvr | 9.93×10-6 |
Ct | 1×10-6 | En | 26.963 |
b/MPa | 30.6203×10-5 | xp2 | 4.92737 |
g | 4.5754×10-6 | r2/MPa | 2.009256×10-5 |
r5 | 45.292294 | A2 | 6.3067×10-5 |
G1 | 5.4521×109 | A1 | 0 |
Cvp | 1.457×10-5 | El | 28.399 |
E2 | 1.0002 | G2 | 8.599×1013 |
表3 IGNITION_ANG_GROWTH状态方程参数
Table 3 IGNITION_ANG_GROWTH equation of state parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
a/MPa | 4.7355 | xp1 | 50.466801 |
Fr | 1.7271 | r1/MPa | 2.293712×10-5 |
r3 | 7.7099×10-5 | r6 | 51.54 380 |
Fq | 11224 | Em | 16.735001 |
E1 | 1.0029 | Cvr | 9.93×10-6 |
Ct | 1×10-6 | En | 26.963 |
b/MPa | 30.6203×10-5 | xp2 | 4.92737 |
g | 4.5754×10-6 | r2/MPa | 2.009256×10-5 |
r5 | 45.292294 | A2 | 6.3067×10-5 |
G1 | 5.4521×109 | A1 | 0 |
Cvp | 1.457×10-5 | El | 28.399 |
E2 | 1.0002 | G2 | 8.599×1013 |
靶厚/ mm | 穿孔数 | 穿孔散布尺寸/mm | ||||
---|---|---|---|---|---|---|
1号靶 | 2号靶 | 3号靶 | 1号靶 | 2号靶 | 3号靶 | |
6 | 1 | 2 | 7 | 208×196 | 285×245 | 370×180 |
10 | 8 | 6 | 6 | 262×242 | 325×320 | 460×415 |
15 | 8 | 16 | 12 | 378×319 | 540×530 | 660×615 |
20 | 2 | 2 | 1 | 130×90 | 135×75 | 128×80 |
表5 靶板穿孔数和穿孔散布尺寸
Table 5 Perforation number and perforation dispersion size of witness plate
靶厚/ mm | 穿孔数 | 穿孔散布尺寸/mm | ||||
---|---|---|---|---|---|---|
1号靶 | 2号靶 | 3号靶 | 1号靶 | 2号靶 | 3号靶 | |
6 | 1 | 2 | 7 | 208×196 | 285×245 | 370×180 |
10 | 8 | 6 | 6 | 262×242 | 325×320 | 460×415 |
15 | 8 | 16 | 12 | 378×319 | 540×530 | 660×615 |
20 | 2 | 2 | 1 | 130×90 | 135×75 | 128×80 |
靶板 厚度/mm | 仿真值1/(m·s-1) (模型B) | 仿真值2/(m·s-1) (模型A) | 增量 占比/% |
---|---|---|---|
6 | 303.5 | 179.8 | 68.7 |
10 | 327.3 | 209.6 | 56.2 |
15 | 348.9 | 235.3 | 48.2 |
表6 壳体破片最大径向速度
Table 6 Jacket fragment maximum radial velocity
靶板 厚度/mm | 仿真值1/(m·s-1) (模型B) | 仿真值2/(m·s-1) (模型A) | 增量 占比/% |
---|---|---|---|
6 | 303.5 | 179.8 | 68.7 |
10 | 327.3 | 209.6 | 56.2 |
15 | 348.9 | 235.3 | 48.2 |
[1] |
|
[2] |
刘宇珩, 霸书红, 杜忠华, 等. 着靶角度对PELE侵彻钢筋混凝土扩孔效应的影响研究[J]. 弹道学报, 2022, 34(4): 15-22.
doi: 10.12115/j.issn.1004-499X(2022)04-003 |
|
|
[3] |
孙圣杰, 王树有, 谭杰, 等. 爆炸成型PELE形成影响因素的数值模拟研究[J]. 火炸药学报, 2020, 43(3): 325-329.
doi: 10.14077/j.issn.1007-7812.201909027 |
|
|
[4] |
王雪飞, 尹建平. 锥角对具有PELE效应的EFP成型影响的数值仿真分析[J]. 含能材料, 2019, 27(2): 104-112.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
doi: 10.1016/j.dt.2019.04.004 |
[9] |
朱建生, 赵国志, 杜忠华, 等. 靶板厚度对横向效应增强型侵彻体作用效果的影响[J]. 南京理工大学学报(自然科学版), 2009, 33(4): 474-479.
|
|
|
[10] |
doi: 10.1016/j.dt.2019.05.002 |
[11] |
doi: 10.1016/j.dt.2020.05.019 |
[12] |
|
[13] |
谢剑文, 李沛豫, 王海福, 等. 活性破片撞击油箱毁伤行为与机理[J]. 兵工学报, 2022, 43(7): 1565-1577.
doi: 10.12382/bgxb.2021.0384 |
doi: 10.12382/bgxb.2021.0384 |
|
[14] |
|
[15] |
余庆波, 周晟, 张甲浩, 等. 金属基活性破片侵彻间隔铝靶作用行为[J/OL]. 兵工学报, 2023, 44(8):2263-2272.
|
|
|
[16] |
doi: 10.1016/j.dt.2020.01.009 |
[17] |
doi: 10.1016/j.dt.2021.03.022 |
[18] |
汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展[J]. 爆炸与冲击, 2021, 41(3): 86-102.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
LSDYNA. Keyword user’s manual[R]. Livermore, CA, US: Livermore Software Technology Corporation, 2020.
|
[29] |
|
[1] | 赵涵, 任会兰, 宁建国. 铝纤维增强铝/聚四氟乙烯活性材料力学性能及反应特性[J]. 兵工学报, 2024, 45(5): 1573-1581. |
[2] | 郑元枫, 王仕鹏, 李培亮, 张勇, 葛超. 活性/金属串联爆炸成型弹丸侵爆耦合毁伤行为[J]. 兵工学报, 2023, 44(8): 2273-2282. |
[3] | 王海福, 何锁, 蔡轶强, 向镜安, 苏成海, 郭焕果. 活性复合射流侵彻多层间隔靶毁伤行为[J]. 兵工学报, 2023, 44(2): 325-333. |
[4] | 苏成海, 李宗谕, 郑元枫, 郑志坚, 郭焕果. 活性药型罩聚能装药侵彻爆燃试验及耦合作用机理分析[J]. 兵工学报, 2023, 44(2): 334-344. |
[5] | 葛超, 曲卓君, 王晋, 胡蝶, 王海福. 氟聚物基活性材料动态压剪实验研究[J]. 兵工学报, 2022, 43(8): 1816-1822. |
[6] | 谢剑文,李沛豫,王海福,郑元枫. 活性破片撞击油箱毁伤行为与机理[J]. 兵工学报, 2022, 43(7): 1565-1577. |
[7] | 邵志宇, 董超超, 伍思宇, 曹苗苗, 杨笑天. 头部含能杆入水穿靶释能特性[J]. 兵工学报, 2022, 43(10): 2517-2526. |
[8] | 胡榕, 姜春兰, 毛亮, 祁宇轩, 蔡尚晔, 胡万翔. Al粒径对富铝聚四氟乙烯基铝活性材料冲击反应性能的影响[J]. 兵工学报, 2022, 43(1): 48-56. |
[9] | 毛亮, 叶胜, 胡万翔, 姜春兰, 王在成. 聚四氟乙烯基铝活性材料的热化学反应特性[J]. 兵工学报, 2020, 41(10): 1962-1969. |
[10] | 苗飞超,周霖,张向荣,曹同堂. 点火增长反应速率方程在LS-DYNA软件中嵌入及应用[J]. 兵工学报, 2019, 40(7): 1411-1417. |
[11] | 肖艳文, 徐峰悦, 余庆波, 郑元枫, 王海福. 类钢密度活性材料弹丸撞击铝靶行为实验研究[J]. 兵工学报, 2016, 37(6): 1016-1022. |
[12] | 陈鹏, 卢芳云, 覃金贵, 陈荣, 陈进, 李志斌, 蒋邦海. 含钨活性材料动态压缩力学性能[J]. 兵工学报, 2015, 36(10): 1861-1866. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||