欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (4): 1273-1284.doi: 10.12382/bgxb.2022.0945

• • 上一篇    下一篇

基于空间特征交叉融合的轻量级图像超分辨率重建

赵小强1,2,3,*(), 程伟1   

  1. 1 兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050
    2 甘肃省工业过程先进控制重点实验室, 甘肃 兰州 730050
    3 兰州理工大学 国家级电气与控制工程实验室教学中心, 甘肃 兰州 730050
  • 收稿日期:2022-10-21 上线日期:2024-04-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(62263021); 甘肃省高校产业支撑计划项目(2023CYZC-24); 甘肃省科技计划项目(21YF5GA072); 甘肃省科技计划项目(21JR7RA206)

Lightweight Image Super-resolution Reconstruction Based on Cross-fusion of Spatial Features

ZHAO Xiaoqiang1,2,3,*(), CHENG Wei1   

  1. 1 College of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2 Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou 730050, Gansu, China
    3 National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
  • Received:2022-10-21 Online:2024-04-30

摘要:

近几年,深度学习技术显著提高了单幅图像超分辨率重建(Single Image Super-resolution Reconstruction,SISR)的性能,但基于深度学习技术的SISR算法存在模型参数量大、网络结构复杂、资源消耗多等问题。为解决这些问题,提出一种基于空间特征交叉融合的轻量级图像超分辨率重建算法,该算法使用多个局部特征融合模块和特征交叉增强模块组成非线性映射单元,通过残差学习逐步聚合图像特征,提取更加精准的残差信息。同时采用对称结构将特征映射到两个分支,通过执行特征交叉,对应元素相乘提取高频成分,细化特征,增加网络非线性。在每个特征交叉增强模块中使用异构卷积代替标准卷积拆分和融合两条分支,有效地降低网络的参数量,使网络在参数量和性能之间达到相对平衡。通过一个多级集成模块增强不同阶段特征的相关性。在基准数据集上的实验结果表明,新的重建算法在降低模型参数量的同时,峰值信噪比和结构相似度均取得了较好的结果,而且重建图像的边缘结构完整,整体轮廓清晰,细节更加丰富。

关键词: 超分辨率, 轻量化, 异构卷积, 特征交叉

Abstract:

In recent years, the deep learning technology has significantly improved the performance of single image super-resolution reconstruction (SISR). However, SISR algorithm based on thedeep learning technology has some problems, such as alarge quantity of model parameters, complex network structure and high resource consumption. In order to solve these problems, this paper proposes a lightweight image super-resolution reconstruction algorithm based on spatial feature cross-fusion. The algorithm uses the multiple local feature fusion modules and the feature cross-enhancement modules to form a nonlinear mapping unit, and learns thestepwise polymerization image features through residuals to extract more accurate residual information. At the same time, the symmetric structure is used to map thefeatures to two branches, and the high-frequency components are extracted by performing thefeature intersection and themultiplication of corresponding elements, which refines thefeatures and increases the network nonlinearity. In each feature cross-enhancement module, the heterogeneous convolution is used instead of standard convolution to split and fuse two branches, which effectively reduces the parameters of the network and makes the network achieve a relative balance between parameters and performance. Finally, a multi-level integration module is used to enhance the correlation of features in different stages. Experiments on benchmark data sets show that the proposed method not only reduces the model parameters, but also achieves good results in peak signal-to-noise ratio and structural similarity, and the edge structure of the reconstructed image is complete, the overall outline is clear and the details are more abundant.

Key words: super-resolution, lightweight, heterogeneous convolution, feature crossing

中图分类号: