欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (3): 736-747.doi: 10.12382/bgxb.2021.0782

• • 上一篇    下一篇

某新型车载多管负载行进间稳定控制方法

高强1(), 侯远龙1(), 吕明明2(), 毛斌3(), 侯润民1(), 羊书毅1(), 吴斌1()   

  1. 1 南京理工大学 机械工程学院,江苏 南京 210094
    2 江苏科技大学 机械工程学院,江苏 镇江212100
    3 内蒙古北方重工业集团有限公司,内蒙古 包头 014033
  • 收稿日期:2021-11-17 上线日期:2022-07-02
  • 作者简介:

    侯远龙(1964—),男,教授,主要研究领域包括机器人、多模态复合智能控制和信号处理。E-mail:

    吕明明(1987—),男,讲师,博士,主要研究方向为目标跟踪与自动控制。E-mail:

    毛斌(1981—),男,高级工程师,主要研究方向为交直流伺服系统的智能建模与控制。E-mail:

    侯润民(1987—),男,副教授,博士,主要研究方向为智能控制算法和复杂非线性系统。E-mail:

    羊书毅(1997—),男,硕士研究生,主要研究方向为电力驱动和计算机控制系统理论。E-mail:

    吴斌(1996—),男,硕士研究生,主要研究方向为智能制造与检测技术。E-mail:

A Marching Stable Control Method for a New Vehicle-Mounted Multi-Tube Load

GAO Qiang1(), HOU Yuanlong1(), LÜ Mingming2(), MAO Bin3(), HOU Runmin1(), YANG Shuyi1(), WU Bin1()   

  1. 1 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
    3 North Heavy Industries Group, Baotou 014033, Inner Mongolia, China
  • Received:2021-11-17 Online:2022-07-02

摘要:

针对某新型车载多管负载存在内外扰动影响、行进间不易稳定的难点,设计一种扰动速度神经网络自适应补偿的稳定控制器。优化设计负载结构使耳轴两端的载荷基本平衡,减小控制过程中由于克服不平衡力矩所产生的能量消耗,以及非线性力矩干扰。稳定控制器采用PI控制计算主控制量;由扰动速度、扰动加速度作为输入构成单神经元控制器计算补偿控制量;利用扩张状态观测器观测载体行进间负载所受到的扰动速度,利用混合微分器得到扰动加速度;由扰动速度、扰动加速度构成单神经元控制器计算补偿控制量;利用RBF神经网络提供梯度信息,对速度补偿系数和加速度补偿系数进行在线学习。数值仿真及台架试验结果表明,所设计稳定控制器具有较强的自学习和自适能力,对不同频率、幅值的扰动均具有鲁棒性,参数学习时间小于3.7 s,积分位置误差均方差小于0.33 mil,由此验证了所提出控制策略对于提高某新型车载多管负载稳定控制精度的可行性和有效性。

关键词: 车载多管负载, 分数阶PID控制, 扩张状态观测器, 混合微分器, RBF神经网络

Abstract:

A novel vehicle multi-tube load faces internal and external disturbances, as well as instability on the move in travelling. In order to solve these problems, a stable controller with adaptive compensation of disturbance velocity is designed based on neural network. The load structure is optimized to balance the loads at both ends of the trunnion and reduce energy consumption and nonlinear interference caused by the unbalanced torque. The main control quantity is calculated by PI controller, and the velocity and acceleration of disturbance are obtained by the extended state observer and the hybrid differentiator, respectively. The single neuron controller is adopted to calculate the compensation control quantity, of which the inputs are disturbance velocity and acceleration. Gradient information is employed by the RBF neural network for online learning of the compensation coefficients of velocity and acceleration. Numerical simulation and bench test results show that the proposed stability controller has strong self-learning and adaptation ability, and it is robust to disturbances of different frequencies and amplitudes. The time for parameter learning is less than 3.7 seconds, and the mean square deviation of integral position errors is less than 0.33 mil. The results verify the feasibility and effectiveness of the proposed controller for vehicle multi-tube loads.

Key words: vehicle multi-tube load, fractional order PID, extended state observer, hybrid differentiator, RBFNN