| 
 [1]  李小丽, 马剑雄, 李萍, 等. 3D打印技术及应用趋势[J]. 自动化仪表, 2014, 35(1):1-5.
 LI Xiao-li, MA Jian-xiong, LI Ping, et al. 3D printing technology and its application trend[J]. Process Automation Instrumentation, 2014, 35(1):1-5. (in Chinese)
 [2]  Alberto  P, Chriset D B.Direct-write technologies for rapid prototyping applications[M]. San Diego, CA,US: Academic Press, 2002.
 [3]  Fletcher R A, Brazin J A, Staymates M E, et al. Fabrication of polymer microsphere particle standards containing trace explosives using an oil/water emulsion solvent extraction piezoelectric printing process[J]. Talanta, 2008, 76(4):949-955.
 [4]  Zunino J L, Schmidt D P, Petrock A M. Inkjet printed devices for armament applications[C]∥Nanotechnology 2010: Life Sciences, Medicine, Diagnostics, Bio Materials and Composites—Technical Proceedings of the 2010 NSTI Nanotechnology Conference and Expo. Anaheim, CA, US: Nano Science and Technology Institute, 2010, 2:542-545.
 [5]  Ihnen A. Inkjet printing of nanocomposite high-explosive materials for direct write fuzing[C]∥Proceedings of the 54th Annual Fuze Conference.  Kansas City, MO, US: National Defense Industrial Association, 2010.
 [6]  Brain E F, Amy W, Paula C, et al. Development, performance and use of direct write explosive inks[C]∥Proceedings of the 14th International Detonation Symposium. Coeur d'Alene Resort, ID, US: Office of Naval Research, 2010: 474–481
 [7]  Jones R D. Solid fuel grain for a hybrid propulsion system of a rocket and method for manufacturing same: US, US9453479[P]. 2016-09-27.
 [8]  伍咏晖, 李晓燕, 张曙. 粒状熔融材料三维打印成形系统的设计与研究[J]. 机电产品开发与创新, 2005, 18(6):71-72.
 WU Yong-hui, LI Xiao-yan, ZHANG Shu. Design and research of three dimensional printing system with fused material pellet[J]. Development and Innovation of Machinery & Electrical Products, 2005, 18(6):71-72. (in Chinese)
 [9]  徐林峰. 均匀液滴喷射微制造技术基础研究[D]. 西安:西北工业大学, 2005.
 XU Lin-feng. Foundational research on uniform droplets spraying micro-fabrication technology[D]. Xi'an: Northwestern Polytechnical University, 2005. (in Chinese)
 
 [10]  许迪. 化学芯片的快速成型技术研究[D]. 南京: 南京理工大学, 2004.
 XU Di. Research on rapid prototyping technology of chemical chip[D]. Nanjing: Nanjing University of Science and Technology, 2004. (in Chinese)
 [11]  朱锦珍. 含能芯片快速成型技术研究[D]. 南京: 南京理工大学, 2005.
 ZHU Jin-zhen. Research on rapid prototyping technology of energetic chip[D]. Nanjing: Nanjing University of Science and Technology, 2005. (in Chinese)
 [12]  王建. 化学芯片的喷墨快速成型技术研究[D]. 南京: 南京理工大学, 2006.
 WANG Jian. Research on rapid inkjet prototyping technology on chemical chip[D]. Nanjing: Nanjing University of Science and Technology, 2006. (in Chinese)
 [13]  汝承博, 张晓婷, 叶迎华, 等. 用于喷墨打印微装药方法的纳米铝热剂含能油墨研究[J]. 火工品, 2013(4):33-36.
 RU Cheng-bo, ZHANG Xiao-ting, YE Ying-hua, et al. Study on nano-thermite energetic material for inkjet printing micro-charge method[J]. Initiators & Pyrotechnics, 2013(4):33-36. (in Chinese)
 [14]  王景龙. 3DP炸药油墨配方设计及制备技术[D]. 太原:中北大学, 2015.
 WANG Jing-long. Ink formulation and preparation technology of 3DP explosive [D]. Taiyuan: North University of China, 2015. (in Chinese)
 [15]  胡松启, 刘茜, 秦少东, 等. 一种基于3D打印的微药柱成型装置及其方法: 中国, CN106431788A[P]. 2017-02-22.
 HU Song-qi, LIU Qian, QIN Shao-dong, et al. Micro grain column  forming device and method based on 3DP technology: CN, CN106431788A[P]. 2017-02-22. (in Chinese)
 [16]  陆星宇. 含能材料3D打印实验系统总体设计及工艺参数影响分析[D]. 南京:南京理工大学, 2017.
 LU Xing-yu. Design of energetic material 3D printing experimental system and influence analysis of process parameters[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
 [17]  朱珠, 雷林, 罗向东, 等. 含能材料3D打印技术及应用现状研究[J]. 兵工自动化, 2015, 34(6):52-55,70.
 ZHU Zhu, LEI Lin, LUO Xiang-dong, et al. Research on application of 3D printing technology of energetic materials[J]. Ordnance Industry Automation, 2015, 34(6):52-55,70. (in Chinese)
 [18]  孙业斌, 惠君明, 曹欣茂. 军用混合炸药[M]. 北京: 兵器工业出版社, 1995.
 SUN Ye-bin, HUI Jun-ming, CAO Xin-mao. Military composite explosive[M]. Beijing: Publishing House of Ordnance Industry, 1995. (in Chinese)
 [19]  刘德润. 弹药装药工艺学[M]. 北京: 北京工业学院出版社, 1981.
 LIU De-run. Ammunition charge technology[M]. Beijing: Beijing Institute of Technology Press, 1981. (in Chinese)
 [20]  陈国光, 董素荣. 弹药制造工艺学[M]. 北京: 北京理工大学出版社, 2004.
 CHEN Guo-guang, DONG Su-rong. Ammunition manufacturing technology[M]. Beijing: Beijing Institute of Technology Press, 2004. (in Chinese)
 [21]  蒙君煚, 姜振明, 张向荣, 等. 功能助剂对2,4-二硝基苯甲醚基熔铸炸药性能的影响[J]. 兵工学报, 2016, 37(3):424-430.
 MENG Jun-jiong, JIANG Zhen-ming, ZHANG Xiang-rong, et al.  Effect of functional agents on the performance of 2,4-dinitroanisole-based melt-cast explosives[J]. Acta Armamentarii, 2016, 37(3):424-430. (in Chinese)
 [22]  金大勇, 王亲会, 牛国涛, 等. 一种高固相含量熔铸炸药精密铸装技术[J]. 火工品, 2013(2):40-43.
 JIN Da-yong, WANG Qin-hui, NIU Guo-tao, et al. The techno-logy  of precise melt-casting charge with high solid contents[J]. Initiators & Pyrotechnics, 2013(2):40-43. (in Chinese)
 [23]  刘杰, 曾江保, 李青, 等. 机械粉碎法制备纳米HMX及其机械感度研究[J]. 火炸药学报, 2012, 35(6):12-14.
 LIU Jie, ZENG Jiang-bao, LI Qing, et al. Mechanical pulverization for nano HMX and study on its mechanical sensitivities[J]. Chinese Journal of Explosives & Propellants, 2012, 35(6):12-14. (in Chinese)
 [24]  段爱梅. 一种热塑态真空振动装药工艺[J]. 兵工自动化, 2012, 31(4):21-23.
 DUAN Ai-mei. A thermoplastic state vacuum vibration charging technology[J]. Ordnance Industry Automation, 2012, 31(4):21-23. (in Chinese)
 [25]  谭彦威, 刘玉存, 李东乐. 一种以LLM-105为主体炸药的熔铸炸药[J]. 火工品, 2011(4):26-28.
 TAN Yan-wei, LIU Yu-cun, LI Dong-le. Study on a kind of melt-cast explosive using LLM-105 as base explosive[J]. Initiators & Pyrotechnics, 2011(4):26-28. (in Chinese)
 [26]  王宇, 芮久后, 冯顺山. 装药缺陷对熔铸炸药爆速影响的实验研究[J]. 北京理工大学学报, 2011, 31(7):757-760.
 WANG Yu, RUI Jiu-hou, FENG Shun-shan. Experimental research of the charge defects' influence on detonation velocity of melting-cast explosive[J]. Transactions of Beijing Institute of Technology, 2011, 31(7):757-760. (in Chinese)
 [27]  刘杰. 具有降感特性纳米硝胺炸药的可控制备及应用基础研究[D]. 南京: 南京理工大学, 2015.
 LIU Jie. Controlled preparation of lower sensitivity characterized nanometer nitramine explosives and their applied basic research[D]. Nanjing: Nanjing University of Science and Technology, 2015. (in Chinese)
 [28]  Raut  S, Jatti V K S, Khedkar N K, et al. Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts[J]. Procedia Materials Science, 2014, 6:1625-1630.
 [29]  Skowyra J, Pietrzak K, Alhnan M A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing[J]. European Journal of Pharmaceutical Sciences, 2015, 68:11-17.
 [30]  王天明. 基于颗粒体熔融堆积的高速挤出装置及快速成形工艺理论研究[D]. 上海:上海交通大学, 2006.
 WANG Tian-ming. High-speed-extrusion equipment based on fused deposition of bulk material in granulated form and study on the FDM process[D]. Shanghai:Shanghai Jiao Tong University, 2006. (in Chinese)
 
 
 
 
 第39卷
 第7期2018  年7月兵工学报ACTA
 ARMAMENTARIIVol.39No.7Jul.2018
 
 
 |