欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2006, Vol. 27 ›› Issue (2): 269-272.

• 论文 • 上一篇    下一篇

基于学习Petri网的网络入侵检测方法

危胜军,胡昌振,高秀峰   

  1. 北京理工大学网络安全技术实验室,北京100081
  • 收稿日期:2005-03-18 上线日期:2014-12-25
  • 通讯作者: 危胜军

A Detection Method of Network Intrusion Based on Learning Petri Nets

WEI Sheng-jun,HU CHang-zHen, GAO Xiu-feng   

  1. Network Security Technique Laboratory, Beijing Institute of Technology, Beijing 100081,China
  • Received:2005-03-18 Online:2014-12-25
  • Contact: WEI Sheng-jun

摘要: 基于神经网络的入侵检测方法存在学习速度慢,不易收敛,分类能力不足等缺点。采用 学习Petri网(LPN)建立了对网络入侵的检测分类方法,该方法在非线性和不连续函数的实现上优 于神经网络,实验结果表明:基于LPN的入侵分类相对于相同结构的神经网络具有更高的识别精 度以及更快的学习速率。

关键词: 计算机系统结构 , 入侵检测 , 学习Petri网 , 神经网络

Abstract: A method of intrusion detection based on neural network(NN) has flaws of slower learning speed, hardness in converging and deficiency of classifier capability. The learning Petri nets(LPN) were adopted to construct the method of network intrusion detection. LPN is superior to NN in the re?alization of nonlinear and discontinuous functions. The test result indicates that the classifier based on LPN has better recognizing precision and faster learning speed compared with the classifier based on the same structure NN.

Key words: computer system architecture , intrusion detection , learning Petri nets , neural network

中图分类号: