[1] |
WANG S J, YANG Y D, CHE Y J. Global snow-and ice-related disaster risk:a review[J]. Natural Hazards Review, 2022, 23(4):03122002.
|
[2] |
华诞麟, 赵晨, 潘成胜. 复杂战场环境下综合电磁复杂度评估方法[J/OL]. 电讯技术, 2024(2024-09-14)[2024-09-15]. https://doi.org/10.20079/j.issn.1001-893x.240320004.
|
|
HUA D L, ZHAO C, PAN C S. Comprehensive assessment method for electromagnetic complexity in complex battlefield environments[J]. Telecommunication Engineering, 2024(2024-09-14)[2024-09-15]. https://doi.org/10.20079/j.issn.1001-893x.240320004. in Chinese)
|
[3] |
BHATTACHARJEE S, JOSHI R, CHUGHTAI A A, et al. Graphene modified multifunctional personal protective clothing[J]. Advanced Materials Interfaces, 2019, 6(21):1900622.
|
[4] |
王哲, 刘鹏, 陈婧, 等. 弹道冲击下石墨烯和聚乙烯改性芳纶织物的钝伤防护性能[J]. 兵工学报, 2024, 45(1):35-43.
doi: 10.12382/bgxb.2022.0578
|
|
WANG Z, LIU P, CHEN J, et al. Blunt trauma resistance of graphene and polyethylene-modified aramid fabrics under ballistic impact[J]. Acta Armamentarii, 2024, 45(1):35-43. (in Chinese)
doi: 10.12382/bgxb.2022.0578
|
[5] |
王晓萌, 李婷婷, 许炳铨, 等. 耐用多功能光热阻燃织物的制备及应用[J]. 纺织学报, 2024, 45(4):120-125.
|
|
WANG X M, LI T T, XU B Q, et al. Preparation and application of durable and multifunctional photothermal flame retardant fabrics[J]. Journal of Textile Research, 2024, 45(4):120-125. (in Chinese)
|
[6] |
LU Z Q, LI D Y, YUAN Z S. Polypyrrole coating on aramid fabrics for improved stab resistance and multifunction[J]. Journal of Engineered Fibers and Fabrics, 2022, 17:15589250221081856.
|
[7] |
ZHAO J Y, SU X W, JIANG L N, et al. A sustainable approach to enhance flame retardant,antibacterial and UV resistance of Lyocell fabrics treated with luffa phosphate derivatives and emodin[J]. Cellulose, 2023, 30(2):1265-1285.
|
[8] |
LIU Y, WANG Y D, WU N, et al. Diverse structural design strategies of Mxene-based macrostructure for high-performance electromagnetic interference shielding[J]. Nano-Micro Letters, 2023, 15(1):240.
doi: 10.1007/s40820-023-01203-5
pmid: 37917275
|
[9] |
XU D X, LI Z D, LI L S, et al. Insights into the photothermal conversion of 2D Mxene nanomaterials:synthesis,mechanism,and applications[J]. Advanced Functional Materials, 2020, 30(47):2000712.
|
[10] |
LIU X Y, JIN X X, LI L, et al. Air-permeable,multifunctional,dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance[J]. Journal of Materials Chemistry A, 2020, 8(25):12526-12537.
|
[11] |
MA C, YUAN Q, DU H S, et al. Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12(30):34226-34234.
|
[12] |
WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances[J]. Advanced Functional Materials, 2019, 29(7):1806819.
|
[13] |
ZHOU J Y, ZHANG J S, SANG M, et al. Advanced functional Kevlar composite with excellent mechanical properties for thermal management and intelligent safeguarding[J]. Chemical Engineering Journal, 2022, 428:131878.
|
[14] |
李悟, 陈维博. GB/T 5455《纺织品燃烧性能垂直方向损毁长度、阴燃和续燃时间的测定》新旧标准的比较[J]. 中国纤检, 2015(19):46-47.
|
|
LI W, CHEN W B. Comparison of new and old standards GB/T 5455[J]. China Fiber Inspection, 2015(19):46-47. (in Chinese)
|
[15] |
邱日祥, 张志江. 《GA141-2010警用防弹衣》标准诠释[J]. 警察技术, 2011(4):70-73.
|
|
QIU R X, ZHANG Z J. Police body armor GA141-2010 standard interpretation[J]. Police Technology, 2011(4):70-73. (in Chinese)
|
[16] |
ZHAO C X, LIU J N, LI B Q, et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries[J]. Advanced Functional Materials, 2020, 30(36):2003619.
|
[17] |
WU Y, WANG Z Y, LIU X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2017, 9(10):9059-9069.
|
[18] |
THOMASSIN J M, JÉRÔME C, PARDOEN T, et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials[J]. Materials Science and Engineering:R:Reports, 2013, 74(7):211-232.
|
[19] |
CARBONE M G P, BEAUGENDRE M, KORAL C. Thermoplastic polyurethane-graphene nanoplatelets microcellular foams for electromagnetic interference shielding[J]. Graphene Technology, 2020, 5:33-39.
|
[20] |
SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304):1137-1140.
doi: 10.1126/science.aag2421
pmid: 27609888
|
[21] |
陈珍, 马建中, 张文博, 等. MXene的制备与改性及其在功能涂层中的应用[J]. 精细化工, 2022, 39(11):2172-2183,2214.
|
|
CHEN Z, MA J Z, ZHANG W B, et al. Preparation and modification of MXene and its application in functional coatings[J]. Fine Chemicals, 2022, 39(11):2172-2183,2214. (in Chinese)
|
[22] |
KIM K, PARK Y G, HYUN B G, et al. Recent advances in transparent electronics with stretchable forms[J]. Advanced Materials, 2019, 31(20):1804690.
|
[23] |
WANG J, LI Y Y, DENG L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials, 2017, 29(3):1603730.
|
[24] |
ZHAO L Y, YAN X H. Molecular architectonics and nanoarchitectonics[M]. Singapore: Springer, 2022.
|
[25] |
LIN H, WANG X G, YU L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1):384-391.
doi: 10.1021/acs.nanolett.6b04339
pmid: 28026960
|
[26] |
YANG B, ZHANG S H, ZOU Y F, et al. Improving the thermal conductivity and mechanical properties of two-component room temperature vulcanized silicone rubber by filling with hydrophobically modified SiO2-graphene nanohybrids[J]. Chinese Journal of Polymer Science, 2019, 37(2):189-196.
|
[27] |
卫锦先, 李王莲. 芳纶纤维的导热性[J]. 宇航材料工艺, 1983(4):25-29,33.
|
|
WEI J X, LI W L. Thermal conductivity of aramid fiber[J]. Aerospace Materials & Technology, 1983(4):25-29,33. (in Chinese)
|