欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2011, Vol. 32 ›› Issue (2): 210-216.

• 论文 • 上一篇    下一篇

目标尺度自适应的Mean Shift跟踪算法

康一梅1, 谢晚冬1, 胡江2, 黄琪1   

  1. (1.北京航空航天大学 软件学院, 北京 100037;2.中国兵器工业计算机应用技术研究所, 北京 100089)
  • 收稿日期:2009-09-07 修回日期:2009-09-07 上线日期:2014-05-04
  • 通讯作者: 康一梅 E-mail:kangyimei@buaa.edu.cn
  • 作者简介:康一梅(1968—),女,博士,副教授

Target Scale Adaptive Mean Shift Tracking Algorithm

KANG Yi-mei1, XIE Wan-dong1, HU Jiang2, HUANG Qi1   

  1. (1.Software School, Beihang University, Beijing 100037, China;2.Beijing Institute of Computer Application, Beijing 100089, China)
  • Received:2009-09-07 Revised:2009-09-07 Online:2014-05-04
  • Contact: KANG Yi-mei E-mail:kangyimei@buaa.edu.cn

摘要: 传统的Mean Shift跟踪算法由于固定了核函数的带宽,因而不能很好地对图像尺度不断变换的目标进行有效的跟踪。针对这一不足,提出了一种将尺度变换和Mean Shift跟踪相结合的目标跟踪方法。在每一帧中,先由 Mean Shift得到目标位置,然后利用仿射变换原理计算得到相邻两帧之间目标的仿射变换矩阵,并利用该矩阵对目标位置和大小进行修正。实验表明改进算法有效的提高了Mean Shift算法在目标尺度变化时的跟踪稳定性,对目标的尺度变化具有适应性。

关键词: 人工智能, Mean Shift, 目标跟踪, 仿射变换, 尺度自适应

Abstract: The traditional Mean-Shift tracking algorithm is not applied to track a size-changing target effectively due to the fixed band-width of its kernel function. For this reason, a new algorithm is proposed. In each frame, Mean Shift tracking algorithm is employed to get the target location, and then the affine structure between frames is calculated to re-correct the position and size of the target. Different experiments prove that the present method has better stability and robustness than the traditional algorithm.

Key words: artificial in telligence, mean shift, target tracking, affine structure, scale adaptation

中图分类号: