欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (9): 240894-.doi: 10.12382/bgxb.2024.0894

• • 上一篇    下一篇

基于改进粒子群优化算法的多弹打击面目标瞄准点优化方法

尹鹏1,2, 黄风雷1,2, 石科仁3, 严雪飞4,*(), 刘彦1,2,**(), 晏江1, 俞杰2   

  1. 1 北京理工大学 爆炸科学与安全防护全国重点试验室, 北京 100081
    2 北京理工大学 长三角研究院, 浙江 嘉兴 314000
    3 93756 部队, 天津 300401
    4 32801 部队, 北京 100082

An Improved Particle Swarm Optimization Algorithm for Optimizing the Aiming Point of Multiple Projectiles against Surface Targets

YIN Peng1,2, HUANG Fenglei1,2, SHI Keren3, YAN Xuefei4,*(), LIU Yan1,2,**(), YAN Jiang1, YU Jie2   

  1. 1 State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
    2 Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314000, Zhejiang, China
    3 Unit 93756 of PLA, Tianjin 300401, China
    4 Unit 32801 of PLA, Beijing 100082, China
  • Received:2024-09-25 Online:2025-09-24

摘要:

针对多弹打击复杂形状面目标时的瞄准点优选问题,提出一种改进粒子群优化算法(Improved Particle Swarm Optimization,IPSO)优化多弹最佳瞄准点。构建瞄准点选择模型时,综合考虑面目标区域形状、区域关联、弹药威力区域、弹药命中精度、累积毁伤和多弹联合毁伤等复杂因素对目标毁伤效果的影响。通过预分配粒子位置和引入粒子活化能改进了粒子群优化算法,在提升算法收敛速度的同时又确保了其全局搜索能力,通过典型复杂面目标测试用例验证算法性能。研究结果表明,IPSO算法相比于蒙特卡洛算法、粒子群优化算法和改进灰狼优化算法具有更优的瞄准点选择能力,平均毁伤收益提升4.3%,且平均瞄准点选择耗时仅为其1/4~1/3,在毁伤收益和计算效率上具有明显优势。

关键词: 多弹, 改进粒子群优化算法, 瞄准点选择, 累积毁伤, 联合毁伤, 复杂面目标

Abstract:

An improved particle swarm optimization (IPSO) algorithm is proposed to optimize the optimal aiming point of multiple projectiles against complex-shaped surface targets.When constructing an aiming point selection model,the influences of complex factors such as surface target area shape,regional correlation,ammunition power area,ammunition hit accuracy,cumulative damage and multi-projectiles combined damage on target damage effect are considered comprehensively.Particle swarm optimization (PSO) algorithm is improved by preassigning the particle positions and introducing the particle activation energy,which not only improves the convergence speed of the algorithm but also ensures the global search ability.The proposed algorithm is verified through typical complex target test cases.The results show that,compared with Monte Carlo algorithm,PSO algorithm and improved grey wolf optimization algorithm,the IPSO algorithm has a better ability to select aiming points,and increases the average damage yield by 4.3%.And the average computation time for aiming point selection is only 1/4-1/3 of that of traditional optimization algorithms.,which has obvious advantages in damage income and computing efficiency.

Key words: multiple ammunition, improved particle swarm optimization, aiming point selection, cumulative damage, combined damage, complex surface target