欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240496-.doi: 10.12382/bgxb.2024.0496

• • 上一篇    

基于BP神经网络的超空泡射弹优化设计方法

巩世龙1, 党建军1, 李少星2, 黄闯1,*()   

  1. 1 西北工业大学 航海学院, 陕西 西安 710072
    2 陆军装备部驻西安地区军事代表局, 陕西 西安 710032
  • 收稿日期:2024-06-24 上线日期:2025-05-07
  • 通讯作者:
  • 基金资助:
    特色学科基础研究项目(G2024WD0134)

Optimization Design Method of the Supercavitating Projectile Based on BP Neural Network

GONG Shilong1, DANG Jianjun1, LI Shaoxing2, HUANG Chuang1,*()   

  1. 1 School of Marine Science and Technology,Northwestern Polytechnical University,Xi’an 710072,Shaanxi,China
    2 Military Representative Bureau of the Army Equipment Department in Xi’an,Xi’an 710032,Shaanxi,China
  • Received:2024-06-24 Online:2025-05-07

摘要:

有效射程是超空泡射弹最重要的性能指标之一,受到外形和衡重参数的耦合影响。为了增加超空泡射弹的有效射程,建立计算超空泡射弹有效射程的数值模型,根据正交试验设计原则设计四因素五水平工况组合,通过仿真计算获得外形及衡重参数影响下的超空泡射弹有效射程数据集,结合反向传播 (Back Propagation,BP)神经网络方法和遗传算法,建立超空泡射弹设计参数优化方法,获得全域最大有效射程及其对应的外形和衡重参数设计结果。研究结果表明:超空泡射弹的水下弹道具有稳定的尾拍特性,通过极差分析,质量对有效射程的影响最大;在没有精确数学模型的情况下,运用BP神经网络,基于有限个数据点训练出的有效射程预测模型精度高,平均误差为0.735%;通过遗传算法获得了四因素耦合影响下的全域最优射程,较数据集中的最好结果提高了5.01%,较正交优化结果提升了1.95%。所得研究结果可为超空泡射弹总体设计工作提供参考。

关键词: 超空泡射弹, 正交试验, BP神经网络, 遗传算法

Abstract:

Effective range is one of the most important performance indexes of supercavitating projectiles, which is influenced by the coupling of shape and weight parameters. In order to increase the effective range of supercavitating projectile, a numerical model for calculating the effective range of supercavitating projectiles is established, and a combination of four factors and five levels is designed according to the principle of orthogonal test design. The effective range data set of supercavitating projectiles under the influence of shape and weight parameters is obtained by simulation calculation, and an optimization method of design parameters of supercavitating projectiles is established by using BP(back propagation) neural network method and genetic algorithm, and the maximum effective range of supercavitating projectile and its corresponding shape and weight parameters are obtained. The results show that the underwater trajectory of supercavitating projectile has a stable tail beat characteristic. The mass has the greatest impact on the effective range through range analysis In the absence of precise mathematical model, the accuracy of the effective range prediction model trained by BP neural network based on limited data points is high with the average error of 0.735%. The optimal range of the whole domain under the influence of four-factors coupling is obtained by genetic algorithm. The range is improved by 5.01% compared with the best result of data set, and by 1.95% compared with the result of orthogonal optimization. The research results can providereference for the overall design of supercavitating projectile.

Key words: supercavitating projectile, orthogonal test, BP neural network, genetic algorithm

中图分类号: