欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (3): 240346-.doi: 10.12382/bgxb.2024.0346

• • 上一篇    下一篇

基于人工神经网络的三棱柱定向装药结构破片初速预测模型

宁建国, 汪齐, 栗建桥*()   

  1. 北京理工大学 爆炸科学与安全防护全国重点实验室, 北京 100081
  • 收稿日期:2024-05-07 上线日期:2025-03-26
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12032006); 国家自然科学基金项目(12172054)

ANN-based Prediction Model for the Initial Velocity of Fragments in a Triangular Prism Directional Charge Structure

NING Jianguo, WANG Qi, LI Jianqiao*()   

  1. State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-05-07 Online:2025-03-26

摘要:

棱柱形装药结构作为一种典型的非对称结构,其能量输出具有明显的方向性,预测其破片速度分布对于新型战斗部的结构设计和毁伤效率评估具有重要意义。针对棱柱形装药结构,建立一种基于人工神经网络的破片速度预测模型。为提高网络模型的效率和准确性,通过理论分析确定了影响破片速度分布的影响因素,为网络模型筛选出4个输入特征参数。通过调整这些特征参数的值,建立多组不同的数值模拟工况,通过数值模拟方法为网络模型提供数据集。用训练好的网络模型对测试集进行了预测,预测结果与数值模拟结果吻合较好,表明该网络模型预测棱柱形装药结构的破片分布具有较高的准确性,并且该神经网络模型具有良好的泛化能力。该神经网络模型具有计算速度快、预测精度高、易于建模等特点,可以较为精确地预测一端起爆条件下棱柱形结构的破片速度分布,为战斗部结构设计和毁伤效率评估提供数据参考。

关键词: 棱柱形壳体, 破片初速, 量纲分析, 人工神经网络

Abstract:

The prismatic charge structure,as a typical asymmetric structure,exhibits a pronounced directional energy output.It is important to predict the velocity distribution of its fragments for the structural design and damage efficiency assessment of warhead.For the prismatic charge structure,a fragment velocity prediction model based on an artificial neural network (ANN) is proposed.To improve the predictive efficiency and accuracy of the network model,the key factors affecting the fragment velocity distribution are identified through theoretical analysis,and four input characteristic parameters are selected for the network model.The multiple sets of different numerical simulation conditions are established by adjusting the values of these characteristic parameters,and a dataset is provided for the network model through numerical simulation method.The trained network model is used to predict the test set,and the predicted results are in good agreement with the numerically simulated results.The results indicate that the proposed network model has high accuracy in predicting the fragment distribution of prismatic charge structure,and has a good generalization capability.The neural network model is characterized by fast computation speed,high predictive accuracy,and easy-to-modeling.It can accurately predict the fragment velocity distribution of prismatic structure under single-end initiation conditions,thus providing important data support for the structural design and damage efficiency assessment of warheads.

Key words: prismatic casing, initial velocity, dimensional analysis, artificial neural network