| [1] |
王在成, 徐祎, 姜春兰, 等. 钨锆钛活性破片对间隔靶的毁伤效应[J]. 兵工学报, 2023, 44(12): 3862-3871.
|
|
WANG Z C, XU Y, JIANG C L, et al. Damage effect of W/Zr/Ti reactive fragments on spaced targets[J]. Acta Armamentarii, 2023, 44(12): 3862-3871. (in Chinese)
|
| [2] |
胡敖博, 赵超越, 陈进, 等. Zr基BMG-W含能破片的力学性能与毁伤性能[J]. 兵工学报, 2024, 45(12): 4407-4422.
|
|
HU A B, ZHAO C Y, CHEN J, et al. Mechanical properties and damage performance of Zr-based BMG-W energetic fragments[J]. Acta Armamentarii, 2024, 45(12): 4407-4422. (in Chinese)
|
| [3] |
GRADY D E, KIPP M E. Fragmentation properties of metals[J]. International Journal of Impact Engineering, 1997, 20(1): 293-308.
|
| [4] |
DU N, XIONG W, WANG T, et al. Study on energy release characteristics of reactive material casings under explosive loading[J]. Defence Technology, 2021, 17(5): 1791-1803.
|
| [5] |
熊玮, 张先锋, 李逸, 等. 活性材料冲击压缩及反应行为模拟方法研究进展[J]. 北京理工大学学报, 2023, 43(10): 995-1015.
|
|
XIONG W, ZHANG X F, LI Y, et al. Simulation method on shock compression and shock-induced chemical reaction behaviors of reactive materials[J]. Transactions of Beijing Institute of Technology, 2023, 43(10): 995-1015. (in Chinese)
|
| [6] |
WANG G, GUO L, CHANG X, et al. Analysis of hydrodynamic ram and cavity evolution characteristics during high-velocity penetration of Zr55Cu30Al10Ni5 fragments into water-filled containers[J]. International Journal of Impact Engineering, 2024, 187: 104900.
|
| [7] |
刘露, 唐恩凌, 陈闯. 活性破片侵彻不同厚度铝靶的数值模拟[J]. 装备制造技术, 2020(10): 115-116, 127.
|
|
LIU L, TANG E L, CHEN C. Numerical simulation of active fragments penetrating aluminum targets with different thicknesses[J]. Equipment Manufacturing Technology, 2020(10): 115-116, 127. (in Chinese)
|
| [8] |
LEE M. Analysis of high-explosive fragmenting shell impact into spaced plates[J]. International Journal of Impact Engineering, 2006, 33(1): 364-370.
|
| [9] |
SWEGLE J W, HICKS D L, ATTAWAY S W. Smoothed particle hydrodynamics stability analysis[J]. Journal of Computational Physics, 1995, 116(1): 123-134.
|
| [10] |
JOHNSON G R, STRYK R A, Beissel S R. SPH for high velocity impact computations[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 347-373.
|
| [11] |
VIGNJEVIC R, REVELES J, CAMPBELL J. SPH in a total lagrangian formalism[J]. Computer Modeling in Engineering & Sciences, 2006, 14(3): 181-198.
|
| [12] |
REDING D J. Multiscale chemical reactions in reactive powder metal mixtures during shock compression[J]. Journal of Applied Physics, 2010, 108(2): 024905.
|
| [13] |
THADHANI N N. Shock-induced chemical reactions and synthesis of materials[J]. Progress in Materials Science, 1993, 37(2): 117-226.
|
| [14] |
XIONG W, ZHANG X, TAN M, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites[J]. The Journal of Physical Chemistry C, 2016, 120(43): 24551-24559.
|
| [15] |
REN K, LI K, LIN Y, et al. Experimental and numerical investigation on the shock characteristics of U-notched ZL205A specimens under dynamic mixed-mode loading[J]. Latin American Journal of Solids and Structures, 2018, 15(11).
|
| [16] |
YANG Y, WANG C, MENG Y, et al. Recent progress on impact induced reaction mechanism of reactive alloys[J]. Defence Technology, 2024, 37(7): 69-95.
|
| [17] |
ZHOU S, XIAO Y, ZHANG J, et al. Damage effect of W0.75NbTiZr high-entropy reactive fragment penetrating spaced target plate[J]. Heliyon, 2025, 11(4): e42513.
|
| [18] |
LU Y, TAN B, LI Y, et al. Numerical simulation study on impact initiation on shielded charge king hypervelocity composite-structure reactive fragments[J]. Polymers, 2024, 16(8): 1054.
|
| [19] |
REN K, CHEN R, LIN Y, et al. Probing the impact energy release behavior of Al/Ni-based reactive metals with experimental and numerical methods[J]. Metals, 2019, 9(5): 499.
|
| [20] |
JOHNSON G R. Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations[J]. Nuclear Engineering and Design, 1994, 150(2): 265-274.
|
| [21] |
FERNANDEZ-MENDEZ S, BONET J, HUERTA A. Continuous blending of SPH with finite elements[J]. Computers & Structures, 2005, 83(17): 1448-1458.
|
| [22] |
张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用[J]. 爆炸与冲击, 2011, 31(3): 243-249.
|
|
ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics[J]. Explosion and shock waves, 2011, 31(3): 243-249. (in Chinese)
|
| [23] |
NING J, ZHENG K, XU X, et al. Coupled finite-volume method and smoothed-particle hydrodynamics method for numerical simulation of interactions between inviscid shock waves and structures[J]. Physics of Fluids, 2024, 36(4): 046115.
|
| [24] |
REN K, CHEN J, QING H, et al. Study on shock-induced chemical energy release behavior of Al/W/PTFE reactive material with mechanical-thermal-chemical coupling SPH approach[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(12): 1937-1948.
|
| [25] |
HU A, CAI S. Research on the novel Al-W alloy powder with high volumetric combustion enthalpy[J]. Journal of Materials Research and Technology, 2021, 13: 311-320.
|