[1] |
TAHK M J, SHIM S W, HONG S M, et al. Impact time control based on time-to-go prediction for sea-skimming antiship missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4):2043-2052.
|
[2] |
李文, 尚腾, 姚寅伟, 等. 速度时变情况下多飞行器时间协同制导方法研究[J]. 兵工学报, 2020, 41(6):1096-1110.
doi: 10.3969/j.issn.1000-1093.2020.06.006
|
|
LI W, SHANG T, YAO Y W, et al. Research on time coordinated guidance method for multiple aircraft under time varying velocity[J]. Acta Armamentarii, 2020, 41(6):1096-1110. (in Chinese)
|
[3] |
FUMIAKI I. Some aspects of a realistic three-dimensional pursuit-evasion game[J]. Journal of Guidance Control & Dynamics, 1993, 16(2):289-293.
|
[4] |
ZHU J W, SU D L, XIE Y, et al. Impact time and angle control guidance independent of time-to-go prediction[J]. Aerospace Science and Technology, 2019, 86(Mar.): 818-825.
|
[5] |
王思卓, 范世鹏, 林德福, 等. 考虑目标机动和落角约束的二阶滑模制导律[J]. 兵工学报, 2022, 43(12):3048-3061.
|
|
WANG S Z, FAN S P, LIN D F, et al. Second order sliding mode guidance law considering target maneu-vering and landing angle constraints[J]. Acta Armamentarii, 2022, 43(12):3048-3061. (in Chinese)
|
[6] |
ADLER F P. Missile guidance by three-dimensional proportional navigation[J]. Journal of Applied Physics, 1956, 27(5): 500-507.
|
[7] |
YAN X D, LÜ S. A two-side cooperative interception guidance law for active air defense with a relative time-to-go deviation[J]. Aerospace Science and Technology, 2020, 100(5):105787.
|
[8] |
ZHUANG Z H, TU J P, WANG H B. Prediction of time to go during missile-target encounter[J]. Journal of Astronautics, 2002, 23(5):32-38.
|
[9] |
李辕, 赵继广, 白国玉, 等. 基于预测碰撞点的剩余飞行时间估计方法[J]. 北京航空航天大学学报, 2016, 42(8):1667-1674.
|
|
LI Y, ZHAO J G, BAI G Y, et al. A method for estimating remaining flight time based on predicting collision points[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1667-1674. (in Chinese)
|
[10] |
史绍琨, 赵久奋, 尤浩. 基于预测碰撞点带落角约束的导引律设计[J]. 火力与指挥控制, 2019, 44(10):148-152.
|
|
SHI S K, ZHAO J F, YOU H. Guidance law design based on predicting collision points with falling angle constraints[J]. Fire Control & Command Control, 2019, 44(10):148-152. (in Chinese)
|
[11] |
吕永佳, 王宝贵, 陈晓刚. 剩余飞行时间估计改进算法研究[J]. 弹箭与制导学报, 2012, 32(3):24-26.
|
|
LÜ Y J, WANG B G, CHEN X G. Research on improved algorithms for estimating remaining flight time[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2012, 32(3):24-26. (in Chinese)
|
[12] |
HOU Z W, LIU L, WANG Y J. Time-to-go estimation for terminal sliding mode based impact angle constrained guidance[J]. Aerospace Science and Technology, 2017, 71(2):685-694.
|
[13] |
张友安, 马国欣. 大前置角下比例导引律的剩余时间估计算法[J]. 哈尔滨工程大学学报, 2013, 34(11):1409-1414.
|
|
ZHANG Y A, MA G X. A remaining time estimation algorithm for proportional guidance law with large leading angle[J]. Journal of Harbin Engineering University, 2013, 34(11): 1409-1414. (in Chinese)
|
[14] |
ZHANG B L, ZHOU D, SHAO C T. Closed-form time-to-go estimation for proportional navigation guidance considering drag[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4705-4717.
|
[15] |
MONDAL S, PADHI R. Generalized explicit guidance with optimal time-to-go and realistic final velocity[J]. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2019, 233(13):4926-4942.
|
[16] |
RA W S, SHIN H S, LEE Y, et al. Recursive time-to-go estimator for anti-ship missiles guided by pure proportional navigation[C]//Proceedings of 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems. Singapore: IEEE, 2020.
|
[17] |
TAHK M J, RYOO C K, CHO H. Recursive time-to-go estimation for homing guidance missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1):13-24.
|
[18] |
WHANG I H, RA W S. Time-to-go estimation filter for anti-ship missile application[C]//Proceedings of the 2008 Sice Annual Conference. Chofu, Japan: IEEE, 2008.
|
[19] |
HULL D G, RADKE J J. Time-to-go prediction for a homing missile based on minimum-time trajectories[J]. AIAA Journal, 2013, 14(5):865-871.
|
[20] |
SHENGNAN F, XIAODONG L, WENJIE Z, et al. Multiconstraint adaptive three-dimensional guidance law using convex optimization[J]. Journal of Systems Engineering and Electronics, 2020, 31(4):791-803.
doi: 10.23919/JSEE.2020.000054
|
[21] |
李辕, 闫梁, 赵继广, 等. 顺轨拦截模式剩余飞行时间估计方法[J]. 航空学报, 2015, 36 (9): 3082-3091.
doi: 10.7527/S1000-6893.2015.0107
|
|
LI Y, YAN L, ZHAO J G, et al. Estimation method for remaining flight time in along orbit interception mode[J]. Acta Aeronautica et Astronautica Sinic, 2015, 36(9): 3082-3091. (in Chinese)
|
[22] |
马帅, 王旭刚, 王中原, 等. 带初始前置角和末端攻击角约束的偏置比例导引律设计以及剩余飞行时间估计[J]. 兵工学报, 2019, 40(1):68-78.
doi: 10.3969/j.issn.1000-1093.2019.01.009
|
|
MA S, WANG X G, WANG Z Y, et al. BPNG law with arbitrary initial lead angle and terminal impact angle constraint and time-to-go estimation[J]. Acta Armamentarii, 2019, 40(1):68-78. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.01.009
|
[23] |
钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2013.
|
|
QIAN X F, LIN R S, ZHAO Y A. Missile aircraft fight mechanics[M]. Beijing: Beijing Institute of Technology Press, 2013. (in Chinese)
|
[24] |
张友安, 王星亮, 刘京茂, 等. 角度控制与时间控制导引律[M]. 北京: 电子工业出版社, 2017.
|
|
ZHANG Y A, WANG X L, LIU J M, et al. Angle control and time control guidance law[M]. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)
|
[25] |
张书森, 孟秀云, 丁晓. 有落角约束的参数可调最优制导律[J]. 飞行力学, 2021, 39(4): 57-60.
|
|
ZHANG S S, MENG X Y, DING X. Parameter adjustable optimal guidance law with falling angle constraint[J]. Flight Dynamics, 2021, 39(4):57-60. (in Chinese)
|
[26] |
ZUO E F, PING F L, PING S D. Optimal guidance with impact angle control based time-to-go estimation[C]//Proceedings of the International Conference on Guidance, Navigation and Control. Harbin, China: Springer, 2022.
|