[1] |
薄煜明, 郭治, 钱龙军, 等. 现代火控理论与应用基础[M]. 北京: 科学出版社, 2012.
|
|
BO Y M, GUO Z, QIAN L J, et al. Modern fire control theory and its application foundation[M]. Beijing: Science Press, 2012. (in Chinese)
|
[2] |
何山, 吴盘龙, 李星秀, 等. 基于刚体弹道模型的防空火控解算方法[J]. 兵工学报, 2020, 41(8):1494-1501.
doi: 10.3969/j.issn.1000-1093.2020.08.003
|
|
HE S, WU P L, LI X X, et al. The antiaircraft fire control calculation method based on rigid body trajectory model[J]. Acta Armamentarii, 2020, 41(8):1494-1501. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.08.003
|
[3] |
宋丕极. 枪炮与火箭外弹道学[M]. 北京: 兵器工业出版社, 1993.
|
|
SONG P J. External ballistics of bullet,projectile and rocket[M]. Beijing: Publication House of Ordnance Industry, 1993. (in Chinese)
|
[4] |
MANUEL S, DARIO A, ALESSIO B, et al. Recursive estimation for sparse Gaussian process regression[J]. Automatica, 2020, 120:109-127.
|
[5] |
CHEN M H, YU C H, GAO J L, et al. Quantum algorithm for Gaussian process regression[J]. Physical Review A, 2022, 106(1):012406.
doi: 10.1103/PhysRevA.106.012406
URL
|
[6] |
SHUSTIN P F, AVRON H. Gauss-legendre features for Gaussian process regression[J]. Journal of Machine Learning Research, 2022, 23(92):1-47.
|
[7] |
FU Y L, LIU X N, SURYADIPTO S, et al. Gaussian mixture model with feature selection: an embedded approach[J]. Computers & Industrial Engineering, 2021, 152:107000.
doi: 10.1016/j.cie.2020.107000
URL
|
[8] |
SAYAH M, GUEBLI D, NOUREDDINE Z, et al. Deep LSTM enhancement for RUL prediction using gaussian mixture models[J]. Automatic Control and Computer Sciences, 2021, 55(1):15-25.
doi: 10.3103/S0146411621010089
|
[9] |
AMIT S, PUSHPENDRA S, BREJESH L, et al. Modeling and prediction of COVID-19 pandemic using Gaussian mixture model[J]. Chaos,Solitons & Fractals, 2020, 138:110023.
doi: 10.1016/j.chaos.2020.110023
URL
|
[10] |
JIN H P, SHI L X, CHEN X G, et al. Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models[J]. Renewable Energy, 2021, 174:1-18.
doi: 10.1016/j.renene.2021.04.028
URL
|
[11] |
ZHANG Y, ZHENG X T, LU X Q. Pairwise comparison network for remote-sensing scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
|
[12] |
张宏鹏, 黄长强, 唐上钦. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报, 2020, 41(8):1894-1903.
|
|
ZHANG H P, HUANG C Q, TANG S Q. CNN-based real-time prediction method of flight trajectory of unmanned combat aerial vehicle[J]. Acta Armamentarii, 2020, 41(9):1894-1903. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.09.022
|
[13] |
PARK M K, LEE J M, KANG W H, et al. Predictive model for PV power generation using RNN (LSTM)[J]. Journal of Mechanical Science and Technology, 2021, 35(2):795-803.
doi: 10.1007/s12206-021-0140-0
|
[14] |
GREG V H, CARLOS M, GONZALO N. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8):5929-5955.
doi: 10.1007/s10462-020-09838-1
|
[15] |
XIE A Q, YANG H, CHEN J, et al. A Short-term wind speed forecasting model based on a multi-variable long short-term memory network[J]. Atmosphere, 2021, 12(5):651.
doi: 10.3390/atmos12050651
URL
|
[16] |
LANDI F, BARADI L, CORNIA M, et al. Working memory connections for LSTM[J]. Neural Networks, 2021, 144:334-341.
doi: 10.1016/j.neunet.2021.08.030
pmid: 34547671
|
[17] |
ZHU Y, LIU J L, GUO C, et al. Prediction of battlefield target trajectory based on LSTM[C]// Proceedings of the 2020 IEEE 16th International Conference on Control & Automation. Singapore: IEEE, 2020:725-730.
|
[18] |
SEPP H, JÜRGEN S. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
pmid: 9377276
|
[19] |
韩子鹏. 弹箭外弹道学[M]. 北京: 北京理工大学出版社, 2014:74-86.
|
|
HAN Z P. Exterior ballistics of projectiles and rockets[M]. Beijing: Beijing Institute of Technology Press, 2014:74-86. (in Chinese)
|
[20] |
MUKADDES Ö T, TURGUT Ö. Derivation of three-derivative Runge-Kutta methods[J]. Numerical Algorithms, 2017, 74(1):247-265.
doi: 10.1007/s11075-016-0147-2
URL
|