[1] 陈小前, 姚雯, 欧阳琦. 飞行器不确定性多学科设计优化理论与应用[M]. 北京:科学出版社, 2013. CHEN X Q, YAO W, OUYANG Q. Aircraft uncertainty multidisciplinary design optimization theory and application[M]. Beijing:Science Press, 2013.(in Chinese) [2] 何琨, 徐潇源, 严正, 等. 基于稀疏多项式混沌展开的孤岛微电网概率潮流计算[J]. 电力系统自动化, 2019, 43(2): 67-79. HE K, XU X Y, YAN Z, et al. Island micro power grid based on sparse polynomial chaos expansion probabilistic power flow calculation[J]. Automation of Electric Power Systems, 2019, 43(2): 67-79. (in Chinese) [3] NI P H, XIA Y, LI J, et al. Using polynomial chaos expansion for uncertainty and sensitivity analysis of bridge structures[J]. Mechanical Systems and Signal Processing, 2019, 119: 293-311. [4] PENG X, LI D H, WU H P, et al. Uncertainty analysis of composite laminated plate with data-driven polynomial chaos expansion method under insufficient input data of uncertain parameters[J]. Composite Structures, 2019, 209: 625-633. [5] NGUYEN B T, SAMIMI A, VERGARA S E W, et al. Analysis of electromagnetic wave propagation in variable magnetized plasma via polynomial chaos expansion[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 438-449. [6] CHYUAN S W. Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading[J]. Finite Elements in Analysis and Design, 2002, 38(7): 613-630. [7] CHYUAN S W. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading[J]. Journal of Sound and Vibration, 2003, 268(3): 465-483. [8] 刘中兵, 张兵, 周艳青. 固体发动机低温点火适应性模拟试验技术[J]. 固体火箭技术, 2015, 38(2): 203-207. LIU Z B, ZHANG B, ZHOU Y Q. Simulation experiment technology for low temperature ignition adaptability of solid rocket motor [J]. Journal of Solid Rocket Technology, 2015, 38(2): 203-207. (in Chinese) [9] 邓康清, 张路, 庞爱民, 等. 自由装填式固体火箭发动机药柱低温点火结构完整性分析[J]. 固体火箭技术, 2018, 41(4): 428-434. DENG K Q, ZHANG L, PANG A M, et al. Analysis on structural integrity of a free loading solid propellant grains under ignition loading at low temperature[J]. Journal of Solid Rocket Technology, 2018, 41(4): 428-434.(in Chinese)
[10] 刘赟, 王浩, 陶如意, 等. 点火过程对小型固体火箭发动机内弹道影响[J]. 含能材料, 2013, 21(1): 75-79. LIU Y, WANG H, TAO R Y, et al. Effect of ignition process on interior trajectory of small solid rocket motor[J]. Chinese Journal of Energetic Materials, 2013, 21(1): 75-79.(in Chinese) [11] 张海联, 周建平. 基于粘弹性随机有限元的固体推进剂药柱可靠性分析[J]. 固体火箭技术, 2003, 26(3): 21-24. ZHANG H L, ZHOU J P. Reliability analysis of solid propellant grain based on viscoelastic stochastic finite element method[J]. Journal of Solid Rocket Technology, 2003, 26(3): 21-24. (in Chinese) [12] YAMAN H, ELIK V, DEAGˇU2IRMENCI E. Experimental investigation of the factors affecting the burning rate of solid rocket propellants[J]. Fuel, 2014, 115: 794-803. [13] GRIEGO C, YILMAZ N, ATMANLI A. Sensitivity analysis and uncertainty quantification on aluminum particle combustion for an upward burning solid rocket propellant[J]. Fuel, 2019, 237: 1177-1185. [14] SURYAWANSHI A, GHOSH D. Reliability based optimization in aeroelastic stability problems using polynomial chaos based metamodels[J]. Structural and Multidisciplinary Optimization, 2016, 53(5): 1069-1080. [15] LE MATRE O P, REAGAN M T, NAJM H N, et al. A stochastic projection method for fluid flow: II. Random process[J]. Journal of Computational Physics, 2002, 181(1): 9-44. [16] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964-979. [17] AL-BITTAR T, SOUBRA A H. Efficient sparse polynomial chaos expansion methodology for the probabilistic analysis of computationally-expensive deterministic models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(12): 1211-1230. [18] ABRAMOWITZ M, STEGUN I A, ROMAIN J E. Handbook of mathematical functions, with formulas, graphs, and mathematical tables[J]. Physics Today, 1966, 19(1): 120-121. [19] MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 137(4): 385-397. [20] SUDRET B, BERVEILLER M, LEMAIRE M. A stochastic finite element procedure for moment and reliability analysis[J]. European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique, 2006, 15(7/8): 825-866. [21] GARCIA-CABREJO O, VALOCCHI A. Global sensitivity analysis for multivariate output using polynomial chaos expansion[J]. Reliability Engineering & System Safety, 2014, 126: 25-36. [22] SURYAWANSHI A, GHOSH D. Reliability based optimization in aeroelastic stability problems using polynomial chaos based metamodels[J]. Structural and Multidisciplinary Optimization, 2016, 53(5): 1069-1080. [23] LEE S H, CHEN W. A comparative study of uncertainty propagation methods for black-box-type problems[J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 239-253. [24] LI D Q, CHEN Y F, LU W B, et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics, 2011, 38(1): 58-68. [25] ZHAO H, GAO Z H, GAO Y, et al. Effective robust design of high lift NLF airfoil under multi-parameter uncertainty[J]. Aerospace Science and Technology, 2017, 68: 530-542. [26] 刘中兵, 周艳青, 张兵. 固体发动机低温点火条件下药柱结构完整性分析[J]. 固体火箭技术, 2015, 38(3): 351-355. LIU Z B, ZHOU Y Q, ZHANG B. Structural integrity analysis on grains of solid rocket motor at low temperature ignition[J]. Journal of Solid Rocket Technology, 2015, 38(3): 351-355. (in Chinese) [27] 宋仕雄, 史宏斌, 刘中兵, 等. 低温状态点火瞬间固体发动机药柱结构响应分析[J]. 固体火箭技术, 2018, 41(3): 278-283. SONG S X, SHI H B, LIU Z B, et al. Structural analysis of solid rocket motor grain at ignition transient under low temperature[J]. Journal of Solid Rocket Technology, 2018, 41(3): 278-283. (in Chinese) [28] 张书俊. 固体火箭发动机粘弹性药柱的动态可靠度分析[D]. 长沙: 国防科学技术大学, 2006. ZHANG S J. Structure dynamic reliability analysis of solid rocket motor viscoelasticity grains[D]. Changsha:National University of Defense Technology, 2006. (in Chinese) [29] 高凤莲. 某型固体火箭发动机药柱结构完整性研究[D]. 长沙:国防科学技术大学, 2012. GAO F L. Research of structural integrity for a certain solid rocket motor grain[D]. Changsha:National University of Defense Technology, 2012. (in Chinese) [30] 蒙上阳, 唐国金, 雷勇军. 材料性能对固体发动机结构完整性的影响[J]. 国防科技大学学报, 2002, 24(5): 10-15. MENG S Y, TANG G J, LEI Y J. Effects of solid rocket motor material properties on the structure integrity[J]. Journal of National University of Defense Technology, 2002, 24(5): 10-15. (in Chinese)
第41卷第1期 2020 年1月兵工学报ACTA ARMAMENTARIIVol.41No.1Jan.2020
|