[1] 杨世全. 国外钻地武器的现状与发展趋势: GF-A-0090570 G[R]. 绵阳:中国工程物理研究院, 2005. YANG S Q. The development of foreign earth penetrating wea-pons: GF-A-0090570 G[R]. Mianyang: China Academy of Engineering Physics, 2005.(in Chinese) [2] WIEGAND D A. Constant strain criteria for mechanical failure of energetic materials[J]. Journal of Energetic Materials, 2003, 21(2): 109-124. [3] PROUD W G, WALLEY S M, WILLIAMSON D M. Recent trends in research on energetic materials at Cambridge[J]. Central European Journal of Energetic Materials, 2009, 6(1): 67-102. [4] LEFRANCOIS A, LAMBERET P, CHESNET P, et al. Microstructural analysis of HE submitted to penetration experiments[C]∥Proceedings of the 31st International Pyrotechnics Seminar. Fort Collins, CO, US: IPS USA Seminars, Inc., 2004. [5] LEFRANCOIS A, LAURENSON R, SADON Y, et al. Expertise of explosive survivability for future penetrator warheads[C]∥Proceedings of 2001 Insensitive Munitions and Energetic Materials Technology Symposium. Bordeaux, France: NDIA, 2001. [6] FIELD J E, SWALLOWE G M, HEAVENS S N. Ignition mechanisms of explosives during mechanical deformation[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1982, 382(1782):231-244. [7] FIELD J E. Hot spot ignition mechanisms for explosives[J]. Academy of Chemical Research, 1992, 25:489-496. [8] PERRY W L, CLEMENTS B, MA X, et al.Relating microstructure, temperature, and chemistry to explosive ignition and shock sensitivity[J]. Combustion and Flame, 2018, 190:171-176. [9] 钟凯, 刘建, 王林元, 等. 含能材料中“热点”的理论模拟研究进展[J]. 含能材料, 2018, 26(1):11-20. ZHONG K, LIU J, WANG L Y, et al. Issue of ‘hot-spot’ in energetic materials: recent progresses of modeling and calculations[J]. Chinese Journal of Energetic Materials, 2018, 26(1):11-20. (in Chinese)
[10] 王洪波, 王旗华, 卢永刚, 等. 冲击加载和斜波加载下PBX炸药细观结构点火特性对比[J]. 高压物理学报, 2017, 31(1): 27-34. WANG H B, WANG Q H, LU Y G, et al. Igition characteristics of PBX explosives at meso-structural level under shock and ramp loading[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 27-34.(in Chinese) [11] KEYHANI A, KIM S, HORIE Y, et al. Energy dissipation in polymer-bonded explosives with various levels of constituent plasticity and internal friction[J]. Computational Materials Science, 2019, 159:136-149. [12] KIM S, WEI Y C, HORIE Y, et al.Prediction of shock initiation thresholds and ignition probability of polymer-bonded explosives using mesoscale simulations[J]. Journal of Mechanics and Phy-sics of solids, 2018, 114:97-116. [13] 陈文, 张庆明, 胡晓东,等. 侵彻过程冲击载荷对装药损伤实验研究[J]. 含能材料, 2009, 17(3):321-324. CHEN W, ZHANG Q M, HU X D, et al. Experimental study on damage to explosive charge by impact load in the process of penetration[J]. Chinese Journal of Energetic Materials, 2009, 17(3):321-324.(in Chinese) [14] 高金霞, 赵卫刚, 郑腾. 侵彻战斗部装药抗过载技术研究[J]. 火工品, 2008(4): 4-7. GAO J X, ZHAO W G, ZHENG T. Study on the anti-overloading technique for penetrating warhead charge[J]. Initiators & Pyrotechnics, 2008(4): 4-7.(in Chinese) [15] 李媛媛, 高立龙, 李巍, 等. 抗过载炸药装药侵彻安全性试验研究[J]. 含能材料, 2010, 18(6):702-705. LI Y Y, GAO L L, LI W, et al. Experiment research on security of insensitive explosive charge during penetration[J]. Chinese Journal of Energetic Materials, 2010, 18(6):702-705.(in Chinese) [16] 李媛媛, 王晓峰, 高立龙, 等. 炸药装药侵彻靶板过程的点火机制分析[J]. 四川兵工学报, 2013, 34(12):24-26. LI Y Y, WANG X F, GAO L L, et al. Initiation mechanism of explosive charge during target penetration[J]. Journal of Sichuan Ordnance, 2013, 34(12):24-26. (in Chinese) [17] 魏强, 黄西成, 陈刚, 等. 高聚物粘结炸药动态损伤破坏的数值刻画[J]. 兵工学报, 2019, 40(7):1381-1389. WEI Q, HUANG X C, CHEN G, et al. Numerical characterization of dynamic damage of PBX explosive[J]. Acta Armamentarii, 2019, 40(7):1381-1389. (in Chinese)
[18] 蔡宣明, 张伟, 徐鹏, 等. 一维应力动态加载下战斗部装药力学响应预报模型[J]. 兵工学报, 2019, 40(4):762-768. CAI X M, ZHANG W, XU P, et al. Prediction model of mechanics response of warhead charge under one-dimensional stress dynamic losding[J]. Acta Armamentarii, 2019, 40(4):762-768. (in Chinese) [19] 张馨予, 吴艳青, 黄风雷, 等. PBX装药弹体侵彻混凝土薄板的数值模拟[J]. 含能材料, 2018, 26(1):101-108. ZHANG X Y, WU Y Q, HUANG F L. Numerical simulation on the dynamic damage of PBX charges filled in projectiles during penetrating thin concrete targets[J]. Chinese Journal of Energetic Materials, 2018, 26(1):101-108.(in Chinese) [20] YANG K, WU Y Q, HUANG F L. Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives[J]. Journal of Hazardous Materials, 2018, 356(15):34-52. [21] 成丽蓉. 典型PBX炸药损伤及对装药安全性影响机制研究[D]. 北京: 清华大学, 2015. CHENG L R. Study on mechanisms of a PBX charge stability under impact damage[D]. Beijing:Tsinghua University,2015.(in Chinese) [22] BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives[J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12):2303-2322. [23] 陈广南. 固体火箭发动机机械撞击载荷作用下安全性研究[D]. 长沙: 国防科学技术大学, 2005. CHEN G N. The study on safety analysis of solid rocket motor under mechanical impact[D]. Changsha: National University of Defense Technology, 2005.(in Chinese) [24] WHITWORTH N J. Simple one-dimensional model of ‘hot-spot’ formation in heterogeneous solid explosives[D]. Cranfield, Bedfordshire, UK: Cranfield University, 1999. [25] CHENG L R, CHEN R, SHI H J, et al. The pore collapse “hot-spots” model coupled with brittle damage for solid explosives[J]. Shock and Vibration, 2014, 2014:972414.
第41卷第1期 2020 年1月兵工学报ACTA ARMAMENTARIIVol.41No.1Jan.2020
|