兵工学报 ›› 2019, Vol. 40 ›› Issue (7): 1518-1536.doi: 10.3969/j.issn.1000-1093.2019.07.023
郭瑞奇1,2, 任辉启2, 张磊2, 龙志林1, 吴祥云2, 徐翔云2, 李泽斌2, 黄魁2
收稿日期:
2018-10-16
修回日期:
2018-10-16
上线日期:
2019-09-03
作者简介:
郭瑞奇(1993—),男,博士研究生。E-mail: grq_xtu@126.com;基金资助:
GUO Ruiqi1,2, REN Huiqi2, ZHANG Lei2, LONG Zhilin1, WU Xiangyun2, XU Xiangyun2, LI Zebin2, HUANG Kui2
Received:
2018-10-16
Revised:
2018-10-16
Online:
2019-09-03
摘要: 分离式大直径Hopkinson杆(SHB)是一种用于研究混凝土和其他非均匀材料动态力学性能的重要手段,杆直径增大会导致传统分离式Hopkinson压杆实验技术的基本假定失效,因此对实验技术、数据处理及实验结果分析等形成了新的挑战。介绍了大直径SHB杆实验技术的发展历程,总结了杆直径增加所带来的几何弥散效应、试件应力均匀性、试件端面平行性和横向惯性效应等问题及相应的解决方法,分析了大直径SHB实验技术的研究方向和热点问题。
中图分类号:
郭瑞奇, 任辉启, 张磊, 龙志林, 吴祥云, 徐翔云, 李泽斌, 黄魁. 分离式大直径Hopkinson杆实验技术研究进展[J]. 兵工学报, 2019, 40(7): 1518-1536.
GUO Ruiqi, REN Huiqi, ZHANG Lei, LONG Zhilin, WU Xiangyun, XU Xiangyun, LI Zebin, HUANG Kui. Research Progress of Large-diameter Split Hopkinson Bar Experimental Technique[J]. Acta Armamentarii, 2019, 40(7): 1518-1536.
[1] HOPKINSON J. On the rupture of an iron wire by a blow[C]∥Proceedings of the Literary and Philosophical Society of Manchester. Manchester, UK: The Manchester Literary and Philosophical Society, 1872: 40-45. [2] HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1914, 213: 437-456. [3] TAYLOR G I. The testing of materials at high rates of loading[J]. Journal of the Institution of Civil Engineers, 1946, 26(8): 486-519. [4] VOLTERRA E. Alcuni risultati di prove dinamiche suimateriali[J]. Rivista Nuovo Cimento, 1948, 4: 1-28.(in Italian) [5] DAVIES R M. A critical study of the Hopkinson pressure bar[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, 240(821): 375-457. [6] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society Section B, 1949, 62(11): 676-700. [7] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017. WANG L L,HU S S,YANG L M,et al. Kinetics of materials[M]. Hefei: Press of University of Science and Technology of China, 2017. (in Chinese) [8] CHEN W W, SONG B. Dynamic characterization of soft materials[M]∥SHUKLA A, RAVICHANDRAN G, RAJAPAKSE Y D S. Dynamic failure of materials and structures.New York, NY, US: Springer Science+Business Media, 2009:1-28. [9] TANG T X, MALVERN L E, JENKINS D A. Rate effects in uniaxial dynamic compression of concrete[J]. Journal of Engineering Mechanics, 1992, 118(1): 108-124. [10] LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate[J]. Rock Mechanics and Rock Engineering, 2005, 38(1):21-39. [11] TANG T X, MALVERN L E, JENKINS D A. Dynamic compressive testing of concrete and mortar[C]∥ Engineering Mechanics in Civil Engineering. US: ASCE, 1984: 663-666. [12] MALVERN L E, JENKINS D A, TANG T, et al. Dynamic compressive testing of concrete[C]∥ Proceedings of the 2nd Symposium on the Interaction of Non-Nuclear Munitions with Structures. Panama City Beach, FL, US: Air Force Engineering and Services Laboratory, 1985: 194-199. [13] MALVERN L E, ROSS C A. Dynamic response of concrete and concrete structures[R]. Gainesville, FL, US: Deptment of Engineering Sciences, Florida University, 1986. [14] MALVERN L E, JENKINS D A, JEROME E, et al. Dispersion correction for split-Hopkinson pressure bar data[R]. Gainesville, FL, US: Deptment of Engineering Sciences, Florida University, 1988. [15] MALVERN L E, JENKINS D A. Dynamic testing of laterally confined concrete[R]. Pasadena, CA,US: California Institute of Technology, 1990. [16] 胡时胜, 刘剑飞, 王梧. 硬质聚氨酯泡沫塑料本构关系的研究[J]. 力学学报, 1998, 30(2):151-156. HU S S, LIU J F, WANG W. Study of the constitutive relationship of rigid polyurethane foam[J]. Acta Mechanica Sinica, 1998, 30(2):151-156. (in Chinese) [17] 薛志刚, 胡时胜. 水泥砂浆在围压下的动态力学性能[J]. 工程力学, 2008, 25(12):184-188. XUE Z G, HU S S. Dynamic behavior of cement mortar under active confinement[J]. Engineering Mechanics, 2008, 25(12):184-188. (in Chinese) [18] 刘孝敏, 胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性[J]. 爆炸与冲击, 2000, 20(2):110-114. LIU X M, HU S S. Wave propagation characteristics in cone bars used for variable cross-section SHPB[J]. Explosion and Shock Waves, 2000, 20(2):110-114. (in Chinese) [19] 胡时胜, 王道荣, 刘剑飞. 混凝土材料动态力学性能的实验研究[J]. 工程力学, 2001, 18(5):115-118. HU S S, WANG D R, LIU J F. Experimental study of dynamic mechanical behavior of concrete[J]. Engineering Mechanics, 2001, 18(5):115-118. (in Chinese) [20] 陈德兴, 胡时胜, 张守保, 等. 大尺寸Hopkinson压杆及其应用[J]. 实验力学, 2005,20(3): 398-402. CHEN D X, HU S S, ZHANG S B, et al. Large dimension Hopkinson pressure bar and its application[J]. Journal of Experimental Mechanics, 2005,20(3): 398-402. (in Chinese) [21] 王礼立, 王永刚. 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005,25(1): 17-25. WANG L L, WANG Y G. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005,25(1): 17-25. (in Chinese) [22] POCHHAMMER L.ber Fortpflanzungsgeschwindig-keiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiszylinder[J]. Journal Für Die Reine Und Angewandte Mathematik, [s.n.], 1876(81): 324-336.(in German) [23] CHREE C. The equations of an isotropic elastic solid in polar and cylindrical co-ordinates their solution and application[J]. Tran-sactions of the Cambridge Philosophical Society, 1889, 14: 250-369. [24] RAYLEIGH J W S. The theory of sound[M]. London, UK: Macmillan, 1896. [25] 刘孝敏, 胡时胜. 大直径SHPB弥散效应的二维数值分析[J]. 实验力学, 2000, 15(4):371-376. LIU X M, HU S S. Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB[J]. Journal of Experimental Mechanics, 2000, 15(4):371-376. (in Chinese) [26] WANG Y G, WANG L L. Stress wave dispersion in large-diameter SHPB and its manifold manifestations[J]. Journal of Beijing Institute of Technology(English Edition), 2004,13(3):247-253. [27] RAVICHANDRAN G, SUBHASH G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1):263-267. [28] 胡金生, 陈向欣. 提高大直径SHPB装置试验精度的方法[J]. 解放军理工大学学报(自然科学版), 2003, 4(1):71-74. HU J S, CHEN X X. Method of enhancing experimental precision for big radial size SHPB equipment[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2003, 4(1):71-74. (in Chinese) [29] FAIRHURST C E, HUDSON J A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression[J]. International Journal of Rock Mechanics & Mining Science and Geomechanics Abstracts, 1999, 36(3):281-289. [30] 陶俊林. SHPB实验中几个问题的讨论[J]. 西南科技大学学报, 2009, 24(3):27-35. TAO J L. Some questions need to discuss in the SHPB experiment[J]. Journal of Southwest University of Science and Technology, 2009, 24(3):27-35. (in Chinese) [31] 孟益平, 胡时胜. 混凝土材料冲击压缩试验中的一些问题[J]. 实验力学, 2003, 18(1):108-112. MENG Y P, HU S S. Some problems in the test of concrete under impact compressive loading[J]. Journal of Experimental Mechanics, 2003, 18(1):108-112. (in Chinese) [32] ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete[C]∥ Proceeding of ASTM. US: ASTM, 1917: 364-377. [33] LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J]. International Journal of Solids & Structures, 2003, 40(2):343-360. [34] ZHANG M, WU H J, LI Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments[J]. International Journal of Impact Engineering, 2009, 36(12): 1327-1334. [35] LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulations[J]. International Journal of Impact Engineering, 2009, 36(12): 1335-1345. [36] ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661. [37] FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2007, 34(3):405-411. [38] FOLLANSBEE P S, FRANTZ C. Wave propagation in the split Hopkinson pressure bar[J]. Journal of Engineering Materials and Technology, 1983, 105(1): 61-66. [39] GORHAM D A. A numerical method for the correction of dispersion in pressure bar signals[J]. Journal of Physics E: Scientific Instruments, 1983, 16(6): 477-479. [40] GONG J C, MALVERN L E, JENKINS D A. Dispersion investigation in the split Hopkinson pressure bar[J]. Journal of Engineering Materials and Technology, 1990, 112(3):309-314. [41] 宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J]. 爆炸与冲击, 2005, 25(3):207-216. SONG L, HU S S. Stress uniformity and constant strain rate in SHPB test[J]. Explosion and Shock Waves, 2005, 25(3):207-216. (in Chinese) [42] 左宇军, 唐春安, 李术才, 等. 基于大直径霍普金森压杆数值试验的非均匀介质动态破坏过程分析[J]. 岩土力学, 2011, 32(1):230-236,268. ZUO Y J, TANG C A, LI S C, et al. Numerical analysis of dynamic failure process of inhomogeneous medium based on large diameter SHPB test[J]. Rock and Soil Mechanics, 2011, 32(1): 230-236, 268. (in Chinese) [43] ZHU J, HU S S, WANG L L. An analysis of stress uniformity for concrete-like specimens during SHPB tests[J]. International Journal of Impact Engineering, 2009, 36(1):61-72. [44] CHRISTENSEN R J, SWANSON S R, BROWN W S. Split-Hopkinson-bar tests on rock under confining pressure[J]. Experimental Mechanics, 1972, 12(11): 508-513. [45] GUPTA R B, NILSSON L. Elastic impact between a finite conical rod and a long cylindrical rod[J]. Journal of Sound & Vibration, 1978, 60(4):555-563. [46] 李夕兵, 赖海辉, 古德生. 不同加载波形下矿岩破碎的耗能规律[J]. 中国有色金属学报, 1992,2(4): 10-14. LI X B, LAI H H, GU D S. The energy consumption regularity of ore rock crush under different loading waveform[J]. The Chinese Journal of Nonferrous Metals, 1992,2(4): 10-14. (in Chinese) [47] 李夕兵, 古德生, 赖海辉. 冲击载荷下岩石动态应力-应变全图测试中的合理加载波形[J]. 爆炸与冲击, 1993, 13(2): 125-130. LI X B, GU D S, LAI H H. On the reasonable loading stress waveforms determined by dynamic stress-strain curves of rocks by SHPB[J]. Explosion and Shock Waves, 1993, 13(2):125-130. (in Chinese) [48] 李夕兵, 刘德顺, 古德生. 消除岩石动态实验曲线振荡的有效途径[J]. 中南工业大学学报, 1995, 26(4):457-460. LI X B, LIU D S, GU D S. Effective method of eliminating the oscillation of rock dynamic stress-strain-strain rate curves[J]. Journal of Central South University of Technology, 1995, 26(4): 457-460. (in Chinese) [49] LOK T S, LI X B, LIU D, et al. Testing and response of large diameter brittle materials subjected to high strain rate[J]. Journal of Materials in Civil Engineering, 2002, 14(3):262-269. [50] 洪亮, 金志仁, 邓宗伟. 花岗岩在SHPB冲击破坏实验中最低加载应变率的杆径效应[J].爆炸与冲击, 2014, 34(3): 328-333. HONG L, JIN Z R, DENG Z W. Bar diameter effect of minimum loading strain rate in granite impacting tests by SHPB Technology[J]. Explosion and Shock Waves, 2014, 34(3): 328-333. (in Chinese) [51] ZHOU Z L, HONG L, LI Q Y, et al. Calibration of split Hopkinson pressure bar system with special shape striker[J]. Journal of Central South University of Technology, 2011, 18(4):1139-1143. [52] 胡时胜,王礼立,宋力,等. Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击, 2014, 34(6):641-657. HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion and Shock Waves, 2014, 34(6): 641-657. (in Chinese) [53] 李为民, 许金余. 大直径分离式霍普金森压杆试验中的波形整形技术研究[J]. 兵工学报, 2009, 30(3):350-355. LI W M, XU J Y. Pulse shaping techniques for large-diameter split Hopkinson pressure bar test[J]. Acta Armamentarii, 2009, 30(3):350-355. (in Chinese) [54] LEE O S, KIM S H, HAN Y H. Thickness effect of pulse shaper on dynamic stress equilibrium and dynamic deformation behavior in the polycarbonate using SHPB technique[J]. Journal of Experimental Mechanics, 2006, 21(1):51-60. [55] 李为民, 许金余, 沈刘军, 等.100 mm SHPB应力均匀及恒应变率加载试验技术研究[J]. 振动与冲击, 2008, 27(2):129-132. LI W M, XU J Y, SHEN L J, et al. Study on 100-mm-diameter SHPB experimental techniques of dynamic stress equilibrium and nearly constant strain rate loading[J]. Journal of Vibration and Shock, 2008, 27(2):129-132. (in Chinese) [56] 袁璞, 马芹永, 张海东. 轻质泡沫混凝土SHPB试验与分析[J]. 振动与冲击, 2014, 33(17):116-119. YUAN P, MA Q Y, ZHANG H D. SHPB tests for light weight foam concrete[J]. Journal of Vibration and Shock, 2014, 33(17): 116-119. (in Chinese) [57] YUAN P, MA Q, MA D D. Stress uniformity analyses on nonparallel end-surface rock specimen during loading process in SHPB tests[J/OL]. Advances in Civil Engineering, 2018. [2018-09-01]. https:∥doi.org/10.1155/2018/5406931. [58] 宋力, 胡时胜. SHPB实验中的端面凹陷修正[J].爆炸与冲击,2010,30(2):203-208. SONG L, HU S S. Correction of end-face indentation in SHPB test[J]. Explosion and Shock Waves, 2010, 30(2): 203-208. (in Chinese) [59] DAVIES E D H, HUNTER S C. The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J]. Journal of the Mechanics & Physics of Solids, 1963, 11(3): 155-179. [60] GORHAM D A. Specimen inertia in high strain-rate compression[J]. Journal of Physics D: Applied Physics, 1989, 22(12): 1888-1893. [61] LU Y B, LI Q M. A correction methodology to determine the strain-rate effect on the compressive strength of brittle materials based on SHPB testing[J]. International Journal of Protective Structures, 2011, 2(1): 127-138. [62] 方秦, 洪建, 张锦华,等. 混凝土类材料SHPB实验若干问题探讨[J]. 工程力学, 2014, 31(5):1-14. FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material[J]. Engineering Mechanics, 2014, 31(5): 1-14. (in Chinese) [63] FOWLES R, WILLIAMS R F. Plane stress wave propagation in solids[J]. Journal of Applied Physics, 1970, 41(1): 360-363. [64] FOWLES R. Conservation relations for spherical and cylindrical stress waves[J]. Journal of Applied Physics, 1970, 41(6): 2740-2741. [65] COWPERTHWAITE M, WILLIAMS R F. Determination of constitutive relationships with multiple gauges in nondivergent waves [J]. Journal of Applied Physics, 1971, 42(1): 456-462. [66] 王礼立, 朱珏, 赖华伟. 冲击动力学研究中实测波信息的解读分析[J]. 高压物理学报, 2010,24(4): 279-285. WANG L L, ZHU J, LAI H W. Understanding and interpreting of the measured wave signals in impact dynamics studies[J]. Chinese Journal of High Pressure Physics, 2010,24(4): 279-285. (in Chinese) [67] WANG L L, HU S S, YANG L M, et al. Development of experimental methods for impact testing by combining Hopkinson pressure bar with other techniques[J]. Acta Mechanica Solida Sinica, 2014, 27(4): 331-344. [68] 张磊, 胡时胜, 梁宗宪. 利用拉氏分析研究冲击载荷下混凝土应力-应变关系[J]. 工程力学, 2005, 22(4): 163-166. ZHANG L, HU S S, LIANG Z X. Lagrange analysis of the stress-strain relation of concrete material under impact[J]. Engineering Mechanics, 2005, 22(4): 163-166. (in Chinese) [69] LAMBERT D E, ROSS C A. Strain rate effects on dynamic fracture and strength[J]. International Journal of Impact Engineering, 2000, 24(10):985-998. [70] JIN X C, HOU C, FAN X L, et al. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs[J]. Scientific Reports, 2017, 7(1):15305. [71] 巫绪涛, 代仁强, 陈德兴, 等. 钢纤维混凝土动态劈裂试验的能量耗散分析[J]. 应用力学学报, 2009, 26(1): 151-154. WU X T, DAI R Q, CHEN D X, et al. Energy dissipation analysis on dynamic splitting-tensile test of steel fiber reinforced concrete[J]. Chinese Journal of Applied Mechanics, 2009, 26(1): 151-154. (in Chinese) [72] 胡时胜, 张磊, 武海军,等. 混凝土材料层裂强度的实验研究[J]. 工程力学, 2004, 21(4):128-132. HU S S, ZHANG L, WU H J, et al. Experimental study on spalling strength of concrete[J]. Engineering Mechanics, 2004, 21(4): 128-132. (in Chinese) [73] 张磊, 胡时胜. 混凝土层裂强度测量的新方法[J]. 爆炸与冲击, 2006, 26(6):537-542. ZHANG L, HU S S. A novel experimental technique to determine the spalling strength of concretes[J]. Explosion and Shock Waves, 2006, 26(6):537-542. (in Chinese) [74] 张磊, 胡时胜, 陈德兴,等. 钢纤维混凝土的层裂特征[J]. 爆炸与冲击, 2009, 29(2):119-124. ZHANG L, HU S S, CHEN D X, et al. Spall fracture properties of steel-fiber-reinforced concrete[J]. Explosion and Shock Waves, 2009, 29(2):119-124. (in Chinese) [75] 张磊, 胡时胜, 陈德兴,等. 混凝土材料的层裂特性[J]. 爆炸与冲击, 2008, 28(3):193-199. ZHANG L, HU S S, CHEN D X, et al. Spall characteristics of concrete materials[J]. Explosion and Shock Waves, 2008, 28(3): 193-199. (in Chinese) [76] HARDING J, WOOD E O, CAMPBELL J D . Tensile testing of materials at impact rates of strain[J]. Journal of Mechanical Engineering Science, 1960, 2(2):88-96. [77] 张凯, 陈荣刚, 张威,等. 混凝土动态直接拉伸实验技术研究[J]. 实验力学, 2014, 29(1):89-96. ZHANG K, CHEN R G, ZHANG W, et al. Study of experimental technique for concrete dynamic direct tension[J]. Journal of Experimental Mechanics, 2014, 29(1):89-96. (in Chinese) [78] 江伟, 卢玉斌, 姜锡权,等. 砂浆-花岗岩ITZ动态直接拉伸力学性能的试验研究[J].岩石力学与工程学报, 2018, 37(8): 1905-1915. JIANG W, LU Y B, JIANG X Q, et al. Experimental study on dynamic direct tensile mechanical properties of mortar-granite ITZ[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8): 1905-1915. (in Chinese) [79] 滕骁, 卢玉斌, 陈兴, 等. 再生混凝土动态直接拉伸的试验研究[J]. 振动与冲击, 2016, 35(9):43-51. TENG X, LU Y B, CHEN X, et al. Tests for dynamic direct tensile of recycled aggregate concrete[J]. Journal of Vibration and Shock, 2016, 35(9):43-51. (in Chinese) [80] 段祝平, 孙琦清, 杨大光,等. 高应变率下金属动力学性能的实验与理论研究——一维杆的实验方法及其应用[J]. 力学进展, 1980(1):215-229. DUAN Z P, SUN Q Q, YANG D G, et al. Experimental and theoretical research on the dynamic mechanics properties of metallic materials at high strain rates-experimental method and application of one dimensional rod[J]. Advances in Mechanics, 1980(1): 215-229. (in Chinese) [81] 张善元, 杨绍瑞. 弹性圆柱体中扭转波的几何弥散效应[J]. 太原理工大学学报, 1983(4):5-18. ZHANG S Y, YANG S R. Effects of geometric dispersion of torsional waves propagating in a circular cylinder rod[J]. Journal of Taiyuan University of Technology, 1983(4):5-18. (in Chinese) [82] BAKER W E, YEW C H. Strain-rate effects in the propagation of torsional plastic waves[J]. Journal of Applied Mechanics, 1966, 33(4): 917-923. [83] 杨桂通, 宋育兆. 固体材料在高应变率条件下的TSHB实验技术[J]. 应用数学和力学, 1985, 6(5):383-388. YANG G T, SONG Y Z. The TSHB technique for material testing at high rates of strain[J]. Applied Mathematics and Mechanics, 1985, 6(5):383-388. (in Chinese) [84] YU X, CHEN L, FANG Q, et al. A review of the torsional split Hopkinson bar[J/OL]. Advances in Civil Engineering, 2018. [2018-09-01]. https:∥doi.org/10.1155/2018/2719741. [85] ALBERTINI C, MONTAGNANI M. Study of the true tensile stress-strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle[J]. Le Journal de Physique IV, 1994, 4(C8): C8-113-C8-118. [86] ALBERTINI C, CADONI E, LABIBES K. Study of the mechanical properties of plain concrete under dynamic loading[J]. Experimental Mechanics, 1999, 39(2):137-141. [87] ALBERTINI C, CADONI E, LABIBES K. Impact fracture process and mechanical properties of plain concrete by means of an Hopkinson bar bundle[J]. Le Journal de Physique IV, 1997, 7(C3): C3-915. [88] CADONI E, LABIBES K, BERRA M, et al. High-strain-rate tensile behaviour of concrete[J]. Magazine of Concrete Research, 2000, 52(5): 365-370. [89] 宁建国, 周风华, 王志华, 等. 强冲击载荷下钢筋混凝土的本构关系、破坏机理与数值方法[J]. 中国科学: 技术科学, 2016, 46(4): 323-331. NING J G, ZHOU F H, WANG Z H, et al. Constitutive model, failure mechanism and numerical method for reinforced concrete under intensive impact loading[J]. Scientia Sinica (Technologica), 2016, 46(4): 323-331. (in Chinese) [90] 陈博斐, 邱欣, 王甲, 等. 冲击压缩载荷下大尺寸混凝土力学响应的数值模拟[J]. 宁波大学学报(理工版), 2017, 30(1): 73-76. CHEN B F, QIU X, WANG J, et al. Numerical simulation on mechanical response of concrete subjected to impact compressive loading[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2017, 30(1): 73-76. (in Chinese) [91] 肖圣哲, 王腾, 陈江瑛. 冻融循环温度对陶粒混凝土动态抗压性能的影响[J].硅酸盐通报, 2018, 37(12): 3935-3938. XIAO S Z, WANG T, CHEN J Y. Influence of freeze-thaw cycling temperature on dynamic compressive properties of ceramsite concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3935-3938. (in Chinese) [92] FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rate of strain[J]. International Journal of Impact Engineering, 2008, 35(6): 425-446. [93] 刘飞, 赵凯, 王肖钧, 等. 软材料和松散材料SHPB冲击压缩实验方法研究[J]. 实验力学, 2007,22(1): 20-26. LIU F, ZHAO K, WANG X J, et al. A study on SHPB method of soft/porous materials[J]. Journal of Experimental Mechanics, 2007,22(1): 20-26. (in Chinese) [94] YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave[J]. International Journal of Impact Engineering, 2019, 125: 63-82. [95] 文祝, 邱艳宇, 紫民, 等. 钙质砂的准一维应变压缩试验研究[J]. 爆炸与冲击, 2019, 39(3): 42-50. WEN Z, QIU Y Y, ZI M, et al. Experimental study on quasi-one-dimensional strain compression of calcareous sand[J]. Explosion and Shock Waves, 2019, 39(3): 42-50. (in Chinese) [96] HOKKA M, BLACK J, TKALICH D, et al. Effects of strain rate and confining pressure on the compressive behavior of Kuru granite[J]. International Journal of Impact Engineering, 2016, 91:183-193. [97] 马冬冬, 马芹永, 袁璞, 等. 冻结黏土单轴与主动围压状态SHPB试验对比分析[J]. 振动与冲击, 2017, 36(19): 255-260. MA D D, MA Q Y, YUAN P, et al. Comparison analysis and SHPB tests on artificial frozen clay in uniaxial load and confining pressure states[J]. Journal of Vibration and Shock, 2017, 36(19): 255-260. (in Chinese) [98] CANDAPPA D P, SETUNGE S, SANJAYAN J G. Stress versus strain relationship of high strength concrete under high lateral confinement[J]. Cement and Concrete Research, 1999, 29(12): 1977-1982. [99] 李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7):1387-1395. LI X B, ZHOU Z L, YE Z Y, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387-1395. (in Chinese) [100] LI X, ZHOU Z, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(5): 739-748. [101] 张磊, 何翔, 王晓峰, 等. 混凝土恒定围压下冲击加载实验装置研制[J]. 振动与冲击, 2015, 34(22):24-27. ZHANG L, HE X, WANG X F, et al. Development of an impact loading test device for concrete under constant confining pressure[J]. Journal of Vibration and Shock, 2015, 34(22):24-27. (in Chinese) [102] 张磊, 任新见, 郝龙. 围压下钢纤维混凝土冲击动力学性能研究[J]. 兵工学报, 2014,35(增刊2):275-280. ZHANG L, REN X J, HAO L. Study of the impact dynamic mechanical properties of steel fiber reinforced concrete under confining pressure[J]. Acta Armamentarii, 2014,35(S2):275-280. (in Chinese) [103] HUMMELTENBERG A, CURBACH M. Design and construction of a biaxial split-Hopkinson-Bar[J]. Betound Stahlbetonbau, 2012, 107(6): 394-400. [104] CADONI E, ALBERTINI C. Modified Hopkinson bar technologies applied to the high strain rate rock tests[M]∥ZHOU Y X, ZHAO J. Advances in Rock Dynamics And Applications. London,UK: CRC Press, 2011: 79-104. [105] NIE H L, SUO T, WU B B, et al. A versatile split Hopkinson pressure bar using electromagnetic loading[J]. International Journal of Impact Engineering, 2018, 116: 94-104. [106] NIE H L, SUO T, SHI X P, et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators[J]. International Journal of Impact Engineering, 2018, 122: 73-82. [107] 王浩宇, 陈震, 许金余, 等. 真三轴冲击试验中加载杆变截面段应力波的传播特性分析[J]. 矿冶工程, 2017, 37(2):11-15. WANG H Y, CHEN Z, XU J Y, et al. Stress wave's propagation characteristics in loaded bar with variable section in true triaxial impact test[J]. Mining and Metallurgical Engineering, 2017, 37(2):11-15. (in Chinese) [108] 徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究[J]. 爆炸与冲击, 2017, 37(2): 180- 185. XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar[J]. Explosion and Shock Waves, 2017, 37(2): 180-185. (in Chinese) [109] 徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究[J]. 振动与冲击, 2018, 37(15): 59-67. XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings[J]. Journal of Vibration and Shock, 2018, 37(15): 59-67. (in Chinese) [110] LIU K, ZHANG Q B, WU G, et al. Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar[J/OL]. Rock Mechanics and Rock Engineering, 2019. [2018-09-01]. https:∥doi.org/10.1007/s00603-018-1691-y. [111] 徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究[J]. 爆炸与冲击, 2019,39(7):4-11. XU S L, SHAN J F, WANG P F, et al. Investigation on penetration performance of concrete under triaxial stress[J]. Explosion and Shock Waves, 2019,39(7):4-11. (in Chinese) [112] RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2002: 42(1): 58-64. [113] DOROGOY A, RITTEL D, GODINGER A. Modification of the shear-compression specimen for large strain testing[J]. Experimental Mechanics, 2015, 55(9): 1627-1639. [114] DOROGOY A, RITTEL D, GODINGER A. A shear-tension specimen for large strain testing[J]. Experimental Mechanics, 2016, 56(3): 437-449. [115] XU Z J, DING X Y, ZHANG W Q, et al. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique[J]. International Journal of Impact Engineering, 2017, 101: 90-104. [116] HOU B, ONO A, ABDENNADHER S, et al. Impact behavior of honeycombs under combined shear-compression. Part I: experiments[J]. International Journal of Solids and Structures, 2011, 48(5): 687-697. [117] XU S L, HUANG J Y, WANG P F, et al. Investigation of rock material under combined compression and shear dynamic loading: an experimental technique[J]. International Journal of Impact Engineering, 2015, 86: 206-222. [118] LI Z W, XU J Y, BAI E L. Static and dynamic mechanical properties of concrete after high temperature exposure[J]. Materials Science & Engineering A, 2012, 544:27-32. [119] HUO J S, HE Y M, XIAO L P, et al. Experimental study on dynamic behaviours of concrete after exposure to high temperatures up to 700 ℃[J]. Materials & Structures, 2013, 46(1/2):255-265. [120] 施劲松, 许金余, 任韦波, 等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报, 2014, 35(5):703-710. SHI J S, XU J Y, REN W B, et al. Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading[J]. Acta Armamentarii, 2014, 35(5):703-710. (in Chinese) [121] 周国才, 胡时胜, 付峥. 用于测量材料高温动态力学性能的SHPB技术[J]. 实验力学, 2010, 25(1): 9-15. ZHOU G C, HU S S, FU Z. SHPB technique used for measuring dynamic properties of material in high temperature[J]. Journal of Experimental Mechanics, 2010, 25(1):9-15. (in Chinese) [122] LI Y L, GUO Y Z, HU H T, et al. A critical assessment of high-temperature dynamic mechanical testing of metals[J]. International Journal of Impact Engineering, 2009, 36(2): 177-184. [123] 范飞林, 许金余. 大直径SHPB实验中的高温加载技术及其应用[J]. 爆炸与冲击, 2013, 33(1):54-60. FAN F L, XU J Y. High-temperature loading techniques in large-diameter SHPB experiment and its application[J]. Explosion and Shock Waves, 2013, 33(1):54-60. (in Chinese) [124] 张磊, 徐松林, 施春英. 应用杆束系统研究水泥砂浆节理面的压剪动特性[J]. 实验力学, 2016, 31(2):175-185. ZHANG L, XU S L, SHI C Y. On the dynamic compression-shear characteristics of cement mortar joint surface based on a bunched bar system[J]. Journal of Experimental Mechanics, 2016, 31(2):175-185. (in Chinese) [125] ZHOU H L, LI C, ZHANG L Q, et al. Micro-XCT analysis of damage mechanisms in 3D circular braided composite tubes under transverse impact[J]. Composites Science and Technology, 2018, 155: 91-99. 第40卷 第7期2019 年7月兵工学报ACTA ARMAMENTARIIVol.40No.7Jul.2019 |
[1] | 蒋明飞, 许辉, 黄陈磊, 刘坤, 吴志林. 弹道明胶动态力学性能试验与本构模型研究[J]. 兵工学报, 2022, 43(9): 2113-2120. |
[2] | 张杜江, 赵振宇, 贺良, 任建伟, 强鹭升, 周贻来. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证[J]. 兵工学报, 2022, 43(8): 1966-1976. |
[3] | 李东伟, 苗飞超, 张向荣, 熊国松, 周霖, 赵双双. 2,4-二硝基苯甲醚基不敏感熔注炸药动态力学性能[J]. 兵工学报, 2021, 42(11): 2344-2349. |
[4] | 高玉波, 秦国华, 张伟, 宜晨虹, 邓勇军. TiB2-B4C复合陶瓷动态压缩特性研究[J]. 兵工学报, 2019, 40(11): 2304-2310. |
[5] | 王严培, 姜启帆, 李玉龙. 基于Hopkinson杆试验技术的PA-GF50复合材料动态力学行为[J]. 兵工学报, 2018, 39(1): 161-169. |
[6] | 杨冬丽, 徐正国, 杨杰, 王琳, 杨院生. 相对密度对泡沫镁合金动态力学性能的影响[J]. 兵工学报, 2013, 34(10): 1286-1290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||