[1] Li W, Preisig J C. Estimation of rapidly time-varying sparse channels[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 927-939. [2] Stojanovic M. Retrofocusing techniques for high rate acoustic communications[J]. Journal of the Acoustical Society of America, 2005, 117(3): 1173-1185. [3] Stojanovic M. Efficient processing of acoustic signals for high-rate information transmission over sparse underwater channels[J]. Physical Communication, 2008, 1(2): 146-161. [4] Kalouptsidis N, Mileounis G, Babadi B, et al. Adaptive algorithms for sparse system identification[J]. Signal Processing, 2011, 91(8): 1910-1919. [5] Angelosante D, Bazerque J A, Giannakis G B. Online adaptive estimation of sparse signals: where RLS meets the l1-norm[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3436-3447. [6] Rao B D, Delgado K K. An affine scaling methodology for best basis selection[J]. IEEE Transactions on Signal Processing, 1999, 47(1): 187-200. [7] Naylor P A, Cui J, Brookes M. Adaptive algorithms for sparse echo cancellation[J]. Signal Processing, 2006, 86(6): 1182-1192. [8] Cotter S F, Rao B D. Sparse channel estimation via matching pursuit with application to equalization[J]. IEEE Transactions on Communications, 2002, 50(3): 374-377. [9] 童峰,许肖梅,方世良. 一种单频水声信号多径时延估计算法[J]. 声学学报, 2008, 33(1): 62-68. TONG Feng, XU Xiao-mei, FANG Shi-liang. Multipath time-delay estimation of underwater acoustic sinusoidal signals[J]. Acta Acustica,2008,33(1):62-68. (in Chinese) [10] 陈东升, 李霞, 方世良, 等. 基于参数模型和混合优化的时变水声信道跟踪[J]. 东南大学学报:自然科学版, 2010, 40(3):459-463. CHEN Dong-sheng, LI Xia, FANG Shi-liang, et al. Tracking of time-varying underwater acoustic channels based on multipath parameter model and hybrid optimization[J]. Journal of Southeast University: Natural Science Edition,2010, 40(3):459-463. (in Chinese) [11] Zeng W J, Xu W. Fast estimation of sparse doubly spread acoustic channels[J]. Journal of the Acoustical Society of America, 2012, 131(1): 303-317. [12] Konstantinos P, Mandar C. New sparse adaptive algorithms based on the natural gradient and the l0-norm[J]. IEEE Journal of Oceanic Engineering, 2013, 38(2): 323-332. [13] Gu Y, Jin Y, Mei S. l0 norm constraint LMS algorithm for sparse system identification[J]. IEEE Signal Processing Letters, 2009, 16(9): 774-777. [14] Jin J, Gu Y, Mei S. A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 409-420. [15] 曲庆, 金坚, 谷源涛. 用于稀疏系统辨识的改进 l0-LMS 算法[J]. 电子与信息学报, 2011, 33(3): 604-609. QU Qing, JIN Jian, GU Yuan-tao. An improved l0-LMS algorithm for sparse system identification[J]. Jounal of Electronics & Information Technology, 2011, 33(3): 604-609. (in Chinese) [16] Su G, Jin J, Gu Y, et al. Performance analysis of l0 norm constraint least mean square algorithm[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2223-2235. [17] Chen Y, Gu Y, Hero A O. Sparse LMS for system identification[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing. Taibei,Taiwan: IEEE, 2009:3125-3128. [18] Shi K, Shi P. Adaptive sparse Volterra system identification with l0-norm penalty[J]. Signal Processing, 2011, 91(10): 2432-2436. [19] Shi K, Shi P. Convergence analysis of sparse LMS algorithms with l1-norm penalty based on white input signal[J]. Signal Processing, 2010, 90(12): 3289-3293. [20] Wu F Y, Tong F. Gradient optimization p-norm-like constraint LMS algorithm for sparse system estimation[J]. Signal Processing, 2013, 93(4): 967-971. [21] Wu F Y, Tong F. Non-uniform norm constraint LMS algorithm for sparse system identification[J]. IEEE Communications Letters, 2013, 17(2): 385-388. [22] Kostas S, Paolo C, Michele Z. The throughput of underwater networks: analysis and validation using a ray tracing simulator[J]. IEEE Transactions on Wireless Communications, 2013, 12(3): 1108-1117. |