欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2014, Vol. 35 ›› Issue (9): 1400-1407.doi: 10.3969/j.issn.1000-1093.2014.09.011

• 论文 • 上一篇    下一篇

基于矩阵对数累积量的极化合成孔径雷达数据去噪方法

刘坤, 马文萍, 刘红英, 王爽   

  1. (西安电子科技大学 智能感知与图像理解教育部重点实验室 智能感知与计算国际联合研究中心, 陕西 西安 710071)
  • 收稿日期:2014-07-08 修回日期:2014-07-08 上线日期:2014-11-03
  • 作者简介:刘坤(1985—),男,博士研究生
  • 基金资助:
    国家重点基础研究发展计划项目(2013CB329402);国家自然科学基金项目(61271302);高等学校学科创新引智计划项目(B07048);教育部长江学者和创新团队发展计划项目(IRT1170)

Matrix Log Cumulant-based Speckle Filtering Method for Polarimetric Synthetic Aperture Radar Data

LIU Kun, MA Wen-ping , LIU Hong-ying, WANG Shuang   

  1. (International Research Center for Intelligent Perception and Computation, Key Laboratory of Intelligent Perception andImage Understanding of Ministry of Education, Xidian University, Xi’an 710071, Shaanxi, China)
  • Received:2014-07-08 Revised:2014-07-08 Online:2014-11-03

摘要: 噪声抑制是极化合成孔径雷达(PolSAR)数据处理中的重要步骤,首次将矩阵的对数累积量应用于PolSAR去噪当中,由数据点的子视数据集计算滤波系数并结合非局部方法的思想实现了PolSAR的斑点噪声抑制。所用方法基于非局部策略选取同质区域,然后利用相干矩阵对数累积量计算得到的滤波系数进行加权滤波。该方法的优点在于同质区域选取和滤波系数的计算均是针对相干矩阵进行的,相对于仅使用主对角线上的元素或SPAN图像,其对极化数据的处理更具合理性。与其他PolSAR去噪算法的对比实验结果表明,该方法在有效平滑同质区域的同时,能够更好地保留地物结构、细节以及纹理信息,并能更好地保持数据的极化相关性。

关键词: 信息处理技术, 遥感图像, 极化合成孔径雷达, 相干斑, 噪声抑制, 对数累积量, 梅林变换

Abstract: Speckle filtering is a crucial procedure in polarimetric synthetic aperture radar (PolSAR) data processing. MLC is introduced into PolSAR speckle filtering by calculating the filtering coefficient based on the matrix log-cumulant (MLC) and using the non-local method for the first time. In the proposed method, a homogeneous region is selected based on non-local method, then the data are filtered using the MLC-based filter coefficient. The determinant of the coherence matrix is used in the calculation in both two steps. It is more reasonable than using the SPAN data or the principal diagonal elements in the coherence matrix. The comparison experiments illustrate that the proposed method can smooth the homogeneous region effectively. Meanwhile, the structure, texture and detail information of PolSAR image are better retained. And the polarimetric signature of the data is also well maintained.

Key words: information processing technology, remote sensing image, polarimetric synthetic aperture radar, speckle filtering, denoising, matrix logcumulant, Mellin transform

中图分类号: