[1] 唐一华. 水下垂直发射航行体空泡流动研究[J]. 宇航总体技术,2018,2(1):12-20. TANG Y H. Research on cavitating flow round an underwater vertical launch vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(1): 12-20. (in Chinese) [2] 刘志勇,颜开,王宝寿,等.潜射导弹尾空泡从生成到拉断过程的数值模拟[J].船舶力学,2005,9(1):43-50. LIU Z Y, YAN K, WANG B S, et al. Numerical simulation of the development process of a trailing cavity from generation to separation[J]. Journal of Ship Mechanics,2005,9(1):43-50. (in Chinese) [3] 尤天庆,王占莹,权晓波,等.尾空泡对水下航行体流体阻尼力影响数值计算分析[J].国防科技大学学报,2016,38(4):64-68. YOU T Q, WANG Z Y, QUAN X B, et al. Numerical analysis of the tail cavity effect on underwater vehicle hydrodynamic damping force[J]. Journal of National University of Defencse Technology, 2016, 38(4):64-68. (In Chinese) [4] 李杰,鲁传敬. 潜射导弹尾部燃气后效建模及数值模拟[J]. 弹道学报,2009,21(4):6-8. LI J, LU C J. The model of combustion gas bubble of submarine-launched missile and numerical simulation [J]. Journal of Ballistics, 2009,21(4):6-8. (in Chinese) [5] 陈玮琪. 水下发射航行体空泡、气泡和自由面相互影响的理论研究[J]. 船舶力学,2017,21(8):929-940. CHEN W Q. Theoretical study of the interaction of the underwater-vehicle cavity, free surface and gas bubble in launching [J]. Journal of Ship Mechanics, 2017,21(8):929-940. (in Chinese) [6] 程少华,权晓波,王占莹,等. 水下航行体垂直发射尾部空泡形态与压力预示方法研究[J]. 水动力学研究与进展A辑,2015,30(3):299-305. CHENG S H, QUAN X B, WANG Z Y,et al. Prediction method on trailing cavity shape and pressure of the underwater vehicle in vertical launching [J]. Journal of Hydrodynamics, 2015,30(3):299-305. (in Chinese) [7] SHI Z Y, YAO X L, ZHAO J L, et al. Research on trailing cavity of underwater vehicles based on potential flow theory[C]∥Proceedings ofthe International Conference on Ocean, Offshore and ArcticEngineering. Madrid, Spain:ASME,2018. [8] RATTAYYA J V, BROSSEAU J A. Potential flow about bodies of revolution with mixed boundary conditions-axial flow[J].Journal of Hydronautics, 1981, 15(1):74-80. [9] 燕国军,阎君,权晓波,等. 水下航行体垂直发射尾部流场数值计算[J]. 导弹与航天运载技术,2012(3):42-46. YAN G J, YAN J, QUAN X B, et al. Numerical study on tail flow field of underwater vehicle in vertical launching [J]. Missiles and Space Vehicles, 2012(3):42-46. (in Chinese) [10] 王晓辉,张珂,褚学森,等. 水下点火推进尾空泡振荡的研究[J]. 船舶力学, 2020, 24(2): 136-144. WANG X H, ZHANG K, CHU X S,et al. Research on the pressure oscillation process of tail bubble of underwater igniting propulsion[J]. Journal of Ship Mechanics, 2020, 24(2): 136-144. (in Chinese) [11] 许昊,王聪,陆宏志,等. 水下超声速气体射流诱导尾空泡实验研究[J]. 物理学报, 2018, 67(1): 014703. XU H, WANG C, LU H Z,et al. Experimental study on submerged supersonic gaseous jet induced tail cavity[J].Acta Physica Sinica, 2018, 67(1): 014703. (in Chinese) [12] DYMENT A, FLODROPS J P, PAQUET J B, et al. Gaseous cavity at the base of an underwater projectile[J]. Aerospace Science and Technology, 1998, 2(8): 489-504. [13] KARLIKOV V P, TOLOKONNIKOV S L. Possible schemes of cavity closure [J]. Fluid Dynamics,2004, 39(2):286-292. [14] PETER M H. Interior source methods for planar and axisymmetic supercavitating flows[D]. Adelaide, Australia:Department of Applied Mathematics,The University of Adelaide, 2003. [15] WANG C, KHOO B C.An indirect boundary element method for three-dimensional explosion bubbles[J]. Journal of Computational Physics, 2004,194(2):451-480.
|