欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2017, Vol. 38 ›› Issue (1): 168-176.doi: 10.3969/j.issn.1000-1093.2017.01.022

• 论文 • 上一篇    下一篇

电动汽车热泵空调系统结霜特性及除霜策略

梁志豪1, 巫江虹1, 金鹏2, 李会喜3   

  1. (1.华南理工大学 机械与汽车工程学院, 广东 广州 510641; 2.北京汽车股份有限公司 汽车研究院, 北京 101300;3.英格索兰(中国)投资有限公司, 广东 广州 510620)
  • 收稿日期:2016-05-05 修回日期:2016-05-05 上线日期:2017-03-03
  • 通讯作者: 巫江虹(1967—), 女, 教授, 博士生导师 E-mail:pmjhwu@scut.edu.cn
  • 作者简介:梁志豪(1990—), 男, 硕士研究生。 E-mail: 13480204681@139.com
  • 基金资助:
    广东省战略性新兴产业发展专项资金新能源汽车产业项目(粤发改高技术(2011)891号文);环境保护部环境保护对外合作中心项目(C/III/S/15/398)

Frost Formation and Defrost Methods of Electric Vehicle Heat Pump Air Conditioning System

LIANG Zhi-hao1, WU Jiang-hong1, JIN Peng2, LI Hui-xi3   

  1. (1.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China;2.Automotive Research Institute, BAIC Motor Co., Ltd.,Beijing 101300, China;3.Ingersoll Rand (China) Co., Ltd., Guangzhou 510620, Guangdong, China)
  • Received:2016-05-05 Revised:2016-05-05 Online:2017-03-03

摘要: 换热器结霜是影响热泵空调冬季制热性能的重要因素。研究电动汽车热泵空调系统微通道换热器结霜性能,在不同室外温度、室外相对湿度、室外送风量工况下,测试热泵系统的制热性能、室外侧微通道换热器结霜面积占比及结霜速率等参数,分析电动汽车热泵空调系统结霜影响因素。研究结果表明:室外温度降低、送风量减少、相对湿度增大都使室外换热器结霜开始时间提前、结霜面积占比增加;分析系统制热能效比和结霜速率随时间的变化关系,发现换热器结霜速率的变化与系统能效的变化趋势一致,运行初期结霜速率增加时,系统能效增加;运行后期结霜速率下降时,系统能效同时下降;经过多种工况下的实验验证了以上规律;将结霜速率骤降同时结霜区域占比达到30%作为反应系统结霜情况的判断点,当结霜速率发生骤降且结霜区域占比达到30%时,系统将进入除霜模式;将二值化照片中结霜区域的占比作为系统除霜完毕的判断点,除霜过程中结霜区域的占比与初始未结霜照片占比一致即可认为除霜完毕,得到完整的除霜控制策略;该除霜策略有效降低系统能耗,提高系统制热性能。

关键词: 工程热物理, 电动汽车, 热泵空调, 制热能效比, 结霜速率, 结霜面积占比

Abstract: Heat exchanger frosting deteriorates the heat performance of electrical vehicle heat pump air conditioning system ( HPACS ) in winter. Specially designed micro-channel heat exchangers are applied to electrical vehicle HPACS here. The system is tested at different surrounding air temperature, different surrounding air relative humidity and different air flow rate. Frost area proportion and frosting rate of outdoor heat exchanger are monitored and analyzed to understand different factors that could influence frosting performance of HPACS. The results show that the increase in air relative humidity, and the decrease in ambient temperature and air flow rate lead to quick frosting and bigger frost area proportion. The relationships between dynamic coefficient of performance (COP) and frosting rate are observed in detail. It reveals that frosting rate keeps the same change tendency to COP. At the period of frost beginning to form, COP and frosting rate increase at almost the same time, and as frosting rate curve start to drop, COP curve also drop at the same time. This phenomenon has been validated at different conditions. It is considered as the switch point of defrosting when the frosting sharply drops and the frost area proportion reaches to 30%. On the other hand, the frost area proportion calculated from binary image of frosting is taken as switch point of defrosting finish. When sharp drop of frosting rate and frost area proportion of 30% are detected, HPACS starts to defrost; when frost area proportion is reduced to same value as non-frosting’s, HPACS stops defrosting. The defrosting control strategy may save defrosting energy and improve the heating performance of electrical vehicle HPACS. Key

Key words: engineeringthermophysics, electricalvehicle, heatpumpairconditioning, COP, frostingrate, frostareaproportion

中图分类号: