欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2014, Vol. 35 ›› Issue (5): 662-669.doi: 10.3969/j.issn.1000-1093.2014.05.013

• 论文 • 上一篇    下一篇

扩展的多约束最优制导律及其特性研究

温求遒1, 刘大卫2, 夏群利1, 李然1   

  1. (1.北京理工大学 宇航学院, 北京 100081;2.中国兵器科学研究院, 北京 100089)
  • 收稿日期:2013-08-06 修回日期:2013-08-06 上线日期:2014-06-23
  • 作者简介:温求遒(1982—),男,讲师,博士后
  • 基金资助:
    中国博士后科学基金一等项目(2008M00006);中国博士后科学基金特别项目(2012T50048)

Research on an Extended Optimal Guidance Law with Multiple Constraints

WEN Qiu-qiu1, LIU Da-wei2, XIA Qun-li1, LI Ran1   

  1. (1. School of Aerospace Engineering, Beijing Institute of Technology,Beijing 100081,China;2.Ordnance Science and Research Academy of China,Beijing 100089,China)
  • Received:2013-08-06 Revised:2013-08-06 Online:2014-06-23

摘要: 为满足侵彻攻击空地导弹末端制导要求,解决当前多约束制导律终端攻角控制问题,设计了包含受剩余飞行时间决定的控制量权函数,并引入到最优问题的目标函数中,基于线性二次最优控制理论推导得到一种扩展的多约束最优制导律。利用指令随时间变化解析表达式及伴随系数法,对制导律加速度指令变化规律及无量纲脱靶量特性进行了研究,证明了制导律指令的收敛性,从而为终端攻角控制创造了有利条件。同时,讨论了制导律增益n的设计原则。结合工程应用的需要,分别提出了一种制导初始条件设计方法及最大需用加速度的估计方法,可有效减小导弹末端机动。通过仿真验证了制导律及分析结论的有效性。

关键词: 控制科学与技术, 落角约束, 最优制导律, 加速度指令, 终端加速度

Abstract: An extended optimal guidance law with terminal miss distance and impact angle constrains is derived. The guidance law is obtained as the solution of a linear quadratic optimal control problem with the goal function weighted by a power of the time-to-go. Based on the analytical expression for the change of guidance command with time and the adjoint system analysis method, the command characteristics and dimensionless miss distance of guidance law are analyzed. The result shows that the acceleration command of guidance law can be converged into zero in the final time of guidance, which may create a good situation for terminal angle of attack control. A design principle for selection of guidance law gain is discussed. Finally, according to the requirements of engineering application, the methods on calculating the guidance initial condition and maximal required acceleration are given. The effectiveness and practicality of the guidance law are demonstrated through simulation.

Key words: control science and technology, impact angle constraint, optimal guidance law, acceleration command, terminal acceleration

中图分类号: