欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2017, Vol. 38 ›› Issue (7): 1336-1347.doi: 10.3969/j.issn.1000-1093.2017.07.012

• 论文 • 上一篇    下一篇

基于对偶四元数的圆锥及划船误差补偿改进算法

邢丽, 熊智, 刘建业, 杭义军   

  1. (南京航空航天大学 导航研究中心, 江苏 南京 211100)
  • 收稿日期:2016-10-29 修回日期:2016-10-29 上线日期:2018-04-12
  • 通讯作者: 熊智(1976—),男,研究员,博士生导师 E-mail:xznuaa@nuaa.edu.cn
  • 作者简介:邢丽(1987—),女,博士研究生。E-mail:nuaaxl@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(61533008、61374115、61533009、61673208);江苏省研究生培养创新工程项目(CXLX13_156);南京航 空航天大学研究生创新基地(实验室)开放基金项目(KFJJ20160320);江苏省“333工程”科研资助立项项目(BRA2016405);留学人员科技活动项目择优资助项目(2016年);航空科学基金项目(20165552043)

Improved Coning and Sculling Error Compensation Algorithms Based on Dual Quaternion for Strapdown Inertial Navigation System

XING Li, XIONG Zhi, LIU Jian-ye, HANG Yi-jun   

  1. (Navigation Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, Jiangsu, China)
  • Received:2016-10-29 Revised:2016-10-29 Online:2018-04-12

摘要: 为提高高动态环境下的对偶四元数捷联惯性导航算法解算精度,将梯形数字积分算法应用于圆锥和划船误差补偿算法中,改进了姿态和速度解算算法,提高了对偶四元数捷联惯性导航算法的解算精度。在单个采样周期内,利用前一时刻采集的陀螺角速率信号和当前时刻采集的陀螺角速率信号,通过梯形积分方式计算角增量进行圆锥误差补偿;利用前一时刻采集的加速度计信号和当前时刻的加速度计信号,通过梯形积分方式计算速度增量并结合同一时刻的角增量进行划船误差补偿。通过设计的多组动态模拟仿真航迹验证表明,当角速率和比力作为圆锥和划船误差补偿算法输入时,梯形积分算法的精度高于传统的矩形积分算法,且航迹的动态性越高,改进算法的性能优势越显著。同时,通过动态跑车实验结果的分析对比,进一步验证了该改进算法的实用性。

关键词: 控制科学与技术, 对偶四元数, 捷联惯性导航算法, 圆锥误差补偿算法, 划船误差补偿算法, 梯形积分方法

Abstract: In order to improve the precision of the strapdown inertial navigation algorithm based on dual quaternion in the high dynamic environment, a trapezoid digital integral algorithm is applied to compensate the coning and sculling errors, which optimizes the attitude and velocity calculating algorithm and improves the calculating precision of the strapdown inertial navigation algorithm. During a sampling period of gyroscope and accelerometer, the angular rates of gyroscope outputs at previous and current times are both integrated by using the trapezoid digital integral algorithm, and the integral angle increment is used for the coning error compensation. The accelerometer outputs at previous and current times are integated by using the trapezoid digital integral algorithm, and the integral velocity increment and the integral angular increment are used for the sculling error compensation. Through the simulation of multi-group dynamic tracks, it is shown that the improved coning and sculling error compensation algorithms adopting the trapezoid digital integration have higher navigation precision than the traditional rectangular digital integration method when the inputs are angular rate and acceleration. The dynamics of the track is higher, and the performance advantage of the improved algorithm is more obvious. The analysis and comparison of kinematic vehicle experimental results further verify the performance advantage of the proposed improved algorithm.Key

Key words: controlscienceandtechnology, dualquaternion, strapdowninertialnavigationalgorithm, coningerrorcompensationalgorithm, scullingerrorcompensationalgorithm, trapezoiddigitalintegralalgorithm

中图分类号: