欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250425-.doi: 10.12382/bgxb.2025.0425

• • 上一篇    下一篇

基于量纲约束与符号回归的半无限金属靶板侵彻效率预测模型

陈青青1,2, 张杰1,2,*(), 王志勇1,2, 赵婷婷1,2, 张煜航3, 王志华1,2   

  1. 1 太原理工大学 航空航天学院, 山西 太原 030024
    2 材料强度与结构冲击山西省重点实验室, 山西 太原 030024
    3 中国辐射防护研究院, 山西 太原 030024
  • 收稿日期:2025-05-29 上线日期:2025-11-05
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12272257); 国家自然科学基金项目(12472390); 国家自然科学基金项目(12202414)

A Predictive Model for Penetration Efficiency of Semi-Infinite Metallic Targets Based on Dimensional Constraints and Symbolic Regression

CHEN Qingqing1,2, ZHANG Jie1,2,*(), WANG Zhiyong1,2, ZHAO Tingting1,2, ZHANG Yuhang3, WANG Zhihua1,2   

  1. 1 College of Aeronautics and Astronautics, Taiyuan University of Technology Taiyuan 030024, Shanxi, China
    2 Shanxi Key Laboratory of Material Strength and Structural Impact, Taiyuan 030024, Shanxi, China
    3 China Institute for Radiation Protection, Taiyuan 030024, Shanxi, China
  • Received:2025-05-29 Online:2025-11-05

摘要: 针对传统侵彻效率预测模型依赖经验公式、适应性差且物理解释力不足的问题,采用一种融合量纲约束与符号回归算法的建模方法,构建了杆弹侵彻半无限金属靶板的侵彻效率预测模型。首先,基于物理先验知识将金属靶板侵彻过程中涉及的7个原始物理变量转化为4个具有明确物理意义的无量纲控制参数;随后,利用收集的819组实验数据,采用引入惩罚机制的遗传编程符号回归算法建立无量纲变量与侵彻效率之间的解析表达式。结果表明:在不同的侵彻工况下,所构建模型在拟合精度、泛化能力与表达结构简洁性方面均表现优异,平均决定系数R2均超过0.8,且能准确捕捉各无量纲参数对侵彻效率的非线性影响。该方法兼具预测精度与跨工况适应性,还可生成结构明确、物理含义清晰的解析表达式,有助于进一步理解各物理参量在侵彻响应过程中的作用机制。

关键词: 半无限金属靶, 侵彻效率, 无量纲量, 机器学习, 符号回归

Abstract:

To address the limitations of traditional penetration efficiency prediction models, such as their reliance on empirical formulas, limited adaptability, and weak physical interpretability, this study proposes a modeling approach that integrates dimensional analysis with symbolic regression. A predictive model is developed for the penetration efficiency of rod projectiles impacting semi-infinite metal targets. Based on physical prior knowledge, seven original physical variables are transformed into four dimensionless control parameters with clear physical significance. Using 819 sets of experimental data, an analytical expression between the dimensionless parameters and penetration efficiency is constructed through a symbolic regression algorithm based on genetic programming, with a penalty mechanism introduced to ensure the participation of all control variables. The Results show that the proposed model performs well across various penetration conditions, with average coefficients of determination (R2) exceeding 0.8. The model accurately captures the nonlinear influence of each parameter on penetration efficiency. Compared to traditional empirical models, the proposed method offers improved predictive accuracy and adaptability, while producing physically meaningful and structurally clear expressions that provide insight into the role of key variables in the penetration process.

Key words: semi-infinite metal target, penetration efficiency, dimensionless parameters, machine learning, symbolic regression