[1] |
傅斌贺, 刘维平, 聂俊峰, 等. 考虑认知行为差异的乘员信息作业绩效研究[J]. 兵工学报, 2019, 40(3): 659-665.
doi: 10.3969/j.issn.1000-1093.2019.03.026
|
|
FU B H, LIU W P, NIE J F, et al. Research on crew’s information operation performance with the difference of cognitive behavior[J]. Acta Armamentarii, 2019, 40(3): 659-665. (in Chinese)
|
[2] |
ZHOU Y Y, HUANG S, XU Z M, et al. Cognitive workload recognition using EEG signals and machine learning: a review[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(3): 799-818.
|
[3] |
SOLÍS-MARCOS I, KIRCHER K. Event-related potentials as indices of mental workload while using an in-vehicle information system[J]. Cognition, Technology & Work, 2019, 21(1): 55-67.
|
[4] |
GHANI U, SIGNAL N, NIAZI I K, et al. A novel approach to validate the efficacy of single task ERP paradigms to measure cognitive workload[J]. International Journal of Psychophysiology, 2020, 158: 9-15.
doi: 10.1016/j.ijpsycho.2020.09.007
pmid: 33045292
|
[5] |
CAUSSE M, FABRE E, GIRAUDET L, et al. EEG/ERP as a measure of mental workload in a simple piloting task[J]. Procedia Manufacturing, 2015, 3: 5230-5236.
|
[6] |
DIAZ-PIEDRA C, SEBASTIÁN M V, DI STASI L L. EEG theta power activity reflects workload among army combat drivers: an experimental study[J]. Brain Sciences, 2020, 10(4): 199.
|
[7] |
WANG Q, SMYTHE D, CAO J, et al. Characterisation of cognitive load using machine learning classifiers of electroencephalogram data[J]. Sensors, 2023, 23(20): 8528.
|
[8] |
PLECHAWSKA-WÓJCIK M, TOKOVAROV M, KACZOROWSKA M, et al. A three-class classification of cognitive workload based on EEG spectral data[J]. Applied Sciences, 2019, 9(24): 5340.
|
[9] |
GORJI H T, WILSON N, VANBREE J, et al. Using machine learning methods and EEG to discriminate aircraft pilot cognitive workload during flight[J]. Scientific Reports, 2023, 13(1): 2507.
doi: 10.1038/s41598-023-29647-0
pmid: 36782004
|
[10] |
GUAN K, ZHANG Z M, CHAI X K, et al. EEG based dynamic functional connectivity analysis in mental workload tasks with different types of information[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 632-642.
doi: 10.1109/TNSRE.2022.3156546
pmid: 35239485
|
[11] |
DIMITRAKOPOULOS G N, KAKKOS I, DAI Z X, et al. Task-independent mental workload classification based upon common multiband EEG cortical connectivity[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 1940-1949.
doi: 10.1109/TNSRE.2017.2701002
pmid: 28489539
|
[12] |
毛明, 刘勇, 胡建军. 坦克装甲车辆综合电子信息系统的总体设计研究[J]. 兵工学报, 2017, 38(6): 1192-1202.
doi: 10.3969/j.issn.1000-1093.2017.06.020
|
|
MAO M, LIU Y, HU J J. Research on the overall design of integrated electronic information system for tanks and armored vehicles[J]. Acta Armamentarii, 2017, 38(6): 1192-1202. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2017.06.020
|
[13] |
MA Z, ZHANG Y Q. Driver-automated vehicle interaction in mixed traffic: types of interaction and drivers’ driving styles[J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2024, 66(2): 544-561.
|
[14] |
DETJEN H, FALTAOUS S, PFLEGING B, et al. How to increase automated vehicles’ acceptance through In-vehicle interaction design: a review[J]. International Journal of Human-Computer Interaction, 2021, 37(4): 308-330.
|
[15] |
LOEW A, KONIAKOWSKY I, FORSTER Y, et al. The impact of speech-based assistants on the driver’s cognitive distraction[J]. Accident Analysis & Prevention, 2023, 179: 106898.
|
[16] |
MAO M, XIE F, HU J J, et al. Analysis of workload of tank crew under the conditions of informatization[J]. Defence Technology, 2014, 10(1): 17-21.
doi: 10.1016/j.dt.2013.12.008
|
[17] |
WICKENS C D. Multiple resources and mental workload[J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2008, 50(3): 449-455.
|
[18] |
孙晓东, 金晓萍, 解芳, 等. 多模态告警和认知负荷对装甲车辆乘员反应的影响[J]. 兵工学报, 2023, 44(4): 972-981.
|
|
SUN X D, JIN X P, XIE F, et al. Effects of multimodal warning and cognitive load on the response of armored vehicle occupants[J]. Acta Armamentarii, 2023, 44(4): 972-981. (in Chinese)
doi: 10.12382/bgxb.2022.0018
|
[19] |
DOUDOU M, BOUABDALLAH A, BERGE-CHERFAOUI V. Driver drowsiness measurement technologies: current research, market solutions, and challenges[J]. International Journal of Intelligent Transportation Systems Research, 2020, 18(2): 297-319.
|
[20] |
JIANG Z B, LI X Y, GE L Z, et al. Using multimodal methods and machine learning to recognize mental workload: distinguishing between underload, moderate load, and overload[J]. International Journal of Human-Computer Interaction, 2024, 41(8): 1-17.
|
[21] |
ZARJAM P, EPPS J, CHEN F. Characterizing working memory load using EEG delta activity[C]// Proceedings of the 2011 19th European Signal Processing Conference. Barcelona, Spain:IEEE, 2011: 1554-1558.
|
[22] |
KUTAFINA E, HEILIGERS A, POPOVIC R, et al. Tracking of mental workload with a mobile EEG sensor[J]. Sensors, 2021, 21(15): 5205.
|
[23] |
FAVRETTO M A, RETTORE ANDREIS F, COSSUL S, et al. Motor unit behaviour at high force levels in diabetic patients with peripheral neuropathy[C]// Proceedings of the IX Latin American Congress on Biomedical Engineering and the XXVIII Brazilian Congress on Engineering Biomedical Engineering. Florianópolis, Brazil: Galoá Proceedings, 2024.
|
[24] |
NIEDERMEYER E. Electrophysiology of the frontal lobe[J]. Clinical Electroencephalography, 2003, 34(1): 5-12.
|
[25] |
ZHOZHIKASHVILI N, ZAKHAROV I, ISMATULLINA V, et al. Parietal alpha oscillations: cognitive load and mental toughness[J]. Brain Sciences, 2022, 12(9): 1135.
|
[26] |
BEHRMANN M, GENG J J, SHOMSTEIN S. Parietal cortex and attention[J]. Current Opinion in Neurobiology, 2004, 14(2): 212-217.
doi: 10.1016/j.conb.2004.03.012
pmid: 15082327
|
[27] |
CHIKHI S, MATTON N, BLANCHET S. EEG power spectral measures of cognitive workload: a meta-analysis[J]. Psychophysiology, 2022, 59(6): e14009.
|
[28] |
DING Y, CAO Y Q, DUFFY V G, et al. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning[J]. Ergonomics, 2020, 63(7): 896-908.
doi: 10.1080/00140139.2020.1759699
pmid: 32330080
|
[29] |
VAN TULDER G, DE BRUIJNE M. Learning cross-modality representations from multi-modal images[J]. IEEE Transactions on Medical Imaging, 2018, 38(2): 638-648.
|
[30] |
FONSECA A, KERICK S, KING J T, et al. Brain network changes in fatigued drivers: a longitudinal study in a real-world environment based on the effective connectivity analysis and actigraphy data[J]. Frontiers in Human Neuroscience, 2018, 12: 418.
doi: 10.3389/fnhum.2018.00418
pmid: 30483080
|
[31] |
JACKSON A F, BOLGER D J. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us[J]. Psychophysiology, 2014, 51(11): 1061-1071.
doi: 10.1111/psyp.12283
pmid: 25039563
|
[32] |
JUSTESEN A B, FOGED M T, FABRICIUS M, et al. Diagnostic yield of high-density versus low-density EEG: the effect of spatial sampling, timing and duration of recording[J]. Clinical Neurophysiology, 2019, 130(11): 2060-2064.
doi: S1388-2457(19)31193-9
pmid: 31541983
|