欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240815-.doi: 10.12382/bgxb.2024.0815

• • 上一篇    

基于脑电信号精准识别特种车辆作业人员视听通道工作负荷

刘天程1, 常若松1, 解芳2, 蒋泽斌3, 张艺竞2,4,*(), 毛明2,**()   

  1. 1 辽宁师范大学 心理学院, 辽宁 大连 116029
    2 中国北方车辆研究所, 北京 100072
    3 浙江大学 心理与行为科学系, 浙江 杭州 310027
    4 大连理工大学 医学部, 辽宁 大连 116024
  • 收稿日期:2024-09-09 上线日期:2025-05-07
  • 通讯作者:
    * 邮箱:
  • 基金资助:
    教育部人文社会科学青年基金项目(23YJC190038); 浙江大学脑机智能国家重点实验室开放研究基金项目(BMI2400022); 先进越野系统技术国家重点实验室开放基金项目(B20240012)

Identification of Auditory and Visual Channel Workloads of Special Vehicle Operators Based on EEG Indicators

LIU Tiancheng1, CHANG Ruosong1, XIE Fang2, JIANG Zebin3, ZHANG Yijing2,4,*(), MAO Ming2,**()   

  1. 1 College of Psychology, Liaoning Normal University, Dalian 116029, Liaoning, China
    2 China North Vehicle Research Institute, Beijing 100072, China
    3 Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
    4 Faculty of Medicine, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2024-09-09 Online:2025-05-07

摘要:

为有效识别特种车辆作业人员视听通道负荷状态,在模拟驾驶环境中采集脑电信号,结合机器学习算法构建作业人员视听通道负荷识别模型。实验招募30名被试,通过提高场景复杂度和听觉N-back任务诱发作业人员产生视觉负荷状态与听觉负荷状态。实验结果表明:听觉负荷状态额叶δθα频段,颞叶δθ频段,枕叶θ频段,顶叶4个频段功率谱密度显著高于视觉负荷状态,并在θβ频段下表现出更强的脑网络连接强度;θ频段脑区功率谱密度是视听通道负荷识别的最优特征,采用该特征的随机森林算法分类准确率可达95.68%。Shap加法解释分析显示,额叶对分类结果贡献最大。研究结果证明了脑电指标在视听通道负荷识别中的有效性,为自适应交互系统的建立提供了理论依据。

关键词: 负荷识别, 脑电, 机器学习, 自适应交互系统

Abstract:

In order to effectively identify the visual and auditory channel workloads of operators during the operation of a special vehicle, a machine learning-based workload recognition model is constructed from the electroencephalogram (EEG) signals acquired in a simulated driving environment. A total of 30 participants were recruited for experiment, and the visual and auditory workload states were induced by increasing the scenario complexity and administering an auditory N-back task. The experimental results show that, the power spectral densities in δ, θ, and α bands in the frontal lobe, δ and θ bands in the temporal lobe, θ band in the occipital lobe, and all four frequency bands in the parietal lobe under the auditory workload condition are significantly higher than those under the visual workload condition. Moreover, the brain network has a stronger connectivity at θ and β bands under the auditory workload condition exhibites. Notably, the θ-band power spectral density (PSD) emerges as the most effective feature for the identification of visual and auditory workload channels, enabling the random forest algorithm to achieve a maximum classification accuracy of 95.68%. Shapley additive explanations (SHAP) analysis indicates that the frontal lobe contributes most significantly to the classification outcomes. These findings demonstrate the effectiveness of EEG-based indicators in identifying the visual and auditory channel workloads, providing a theoretical foundation for the development of adaptive interaction systems.

Key words: workload identification, electroencephalogram, machine learning, adaptive interactive systems

中图分类号: