欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

MICP固化钙质砂动态力学试验及微平面模型仿真

冯君1,孙巍巍2*,黄竞楠1,孙溪晨1,3,李一凡3,杜鲁飞2,付佳维3   

  1. 1. 南京理工大学 瞬态物理全国重点实验室; 2. 南京理工大学 安全科学与工程学院; 3. 南京理工大学 机械工程学院
  • 收稿日期:2025-03-06 修回日期:2025-05-29
  • 基金资助:
    瞬态物理全国重点实验室基金项目(2024-CXPT-GF-JJ-095-09);智剑实验室(火箭军工程大学)开放基金项目(2024-ZJSYS-KF02-10)

Dynamic Mechanical Test and Simulation Based on Microplane Model of MICP-Treated Calcareous Sand

FENG Jun1, SUN Weiwei2 *, HUANG Jingnan1, SUN Xichen1,3, LI Yifang3, DU Lufei2, FU Jiawei3   

  1. 1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology; 
    2. School of Safety Science and Engineering, Nanjing University of Science and Technology; 3. School of Mechanical Engineering, Nanjing University of Science and Technology
  • Received:2025-03-06 Revised:2025-05-29

摘要: 微生物诱导碳酸钙沉积(Microbially Induced Calcite Precipitation, MICP)技术对岛礁工事钙质砂基层的原位建造固化效果显著,MICP固化钙质砂的动态力学特性与仿真模型是岛礁防护设计与毁伤评估的重要基础。对南海钙质砂开展MICP胶结试验,通过准静态单轴压缩、霍普金森压杆(Split Hopkinson Pressure Bar, SHPB)动态力学试验获得MICP固化钙质砂的应变率效应,基于微平面模型M7二次开发材料子程序VUMAT,标定其材料参数;对比钙质砂侵彻试验,数值模拟研究MICP固化对钙质砂抗侵彻性能的增益。研究研究表明:MICP固化钙质砂试样的单轴抗压强度为12.31 MPa,SHPB的应变率为426 s-1、1 150 s-1、1 712 s-1时,抗压强度的动态强度放大因子分别为1.117、1.485和1.828;应变率效应对M7本构模型仿真侵深影响约4.2%;相比钙质砂侵彻响应,MICP固化钙质砂的侵深减小40.11%,靶体静态阻力项均值从5.21 MPa提高到11.89 MPa,抗侵彻性能大幅度提升。研究结果可为强冲击载荷下岛礁工事的毁伤分析提供实验数据与仿真模型参考。

关键词: 钙质砂胶结, 应变率效应, 微生物诱导碳酸钙沉积, 微平面模型, 抗侵彻性能

Abstract: Microbially induced calcite precipitation (MICP) is effective to strengthen calcareous sand foundation of reef fortifications via in situ construction, dynamic response and numerical model of MICP-treated calcareous sand is essential to the reef defense design and damage evaluation. The MICP cementation experiment was conducted on calcareous sand from the South China Sea. The strain rate effect of MICP-treated calcareous sand was evaluated through quasi-static uniaxial compression and dynamic mechanical testing using a Split Hopkinson Pressure Bar (SHPB), and user subroutine VUMAT was developed based on the microplane model M7, with material parameters calibrated accordingly. Comparing with the calcareous sand penetration experiments, the numerical simulations demonstrated an increase in the penetration resistance of calcareous sand. The results revealed that the unconfined uniaxial compressive strength of the MICP-treated calcareous sand specimen was 12.31 MPa, and at strain rates of 426 s⁻¹, 1 150 s⁻¹, and 1 712 s⁻¹ on the Hopkinson bar, the dynamic increase factors were 1.117, 1.485, and 1.828, respectively. Rate effect has a negative effect on M7 model penetration simulation by 4.2% DOP contribution. Compared with ordinary calcareous sand, the depth of penetration of MICP-treated calcareous sand was reduced by 40.11% on average, while the average target static resistance increased from 5.21 MPa to 11.89 MPa, indicating a significant increase in the resistance to penetration. These findings provide experimental data and simulation model reference for damage analyses of reef fortifications subjected to high-impact loadings.

Key words: calcareous sand cementation, strain rate effect, microbially induced calcite precipitation, microplane model, anti-penetration performance

中图分类号: