欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

空基杀伤链网络关键边识别方法

李争1,2*,何明浩1,胡乔林1,冯明月1   

  1. 1. 空军预警学院 信息对抗系, 湖北 武汉 430019; 2.95786部队, 四川 成都 610000
  • 收稿日期:2025-03-04 修回日期:2025-06-03
  • 基金资助:
    国家社会科学基金项目(2023-SKJJ-B-053)

Air-based Kill Chain Network Critical Edge Identification Method

LI Zheng1,2 *, HE Minghao¹, HU Qiaolin¹, FENG Mingyue¹   

  1. 1.Department of Information Countermeasure, Air Force Early Warning Academy, Wuhan 430019, Hubei, China; 2.Unit 95786, Chengdu 610000, Sichuan, China
  • Received:2025-03-04 Revised:2025-06-03

摘要: 针对空基杀伤链网络的关键边识别难题,提出一种基于深度强化学习的自适应关键边检测框架。该方法运用复杂网络对空基杀伤链建模;引入回溯搜索思想提出一种模板杀伤链搜索方法;基于强化学习构建分层经验回放机制与动态ε-贪婪策略相结合的关键边探索范式,通过多维度状态表征,实现关键边的精准定位。实验结果表明:在模拟空基杀伤链网络测试中,所提方法的Top-10识别准确率达到85%,较传统介数中心性方法提升89.5%,比深度Q网络(DQN)基准提升19.7%;在网络鲁棒性指标方面,全局效率下降率η较边介数提升37.4%,最大连通分量保留率预测误差控制在5%以内。

关键词: 杀伤链, 复杂网络, 关键边, Q-learning

Abstract: This paper proposes an adaptive key edge detection framework based on deep reinforcement learning to address the challenge of identifying key edges in air based kill chain networks. This method first uses complex networks to model the air based kill chain; Secondly, a template kill chain search method is proposed by introducing the idea of backtracking search; Once again, based on deep reinforcement learning, a key edge exploration paradigm was constructed that combines a layered experience replay mechanism with a dynamic ε - greedy strategy. Through multi-dimensional state representation, precise localization of key edges was achieved. The experiment shows that in the simulation of air based kill chain network testing, the Top-10 recognition accuracy of this method reaches 85%, which is 89.5% higher than the traditional betweenness centrality method and 19.7% higher than the benchmark of deep Q-network (DQN); In terms of network robustness indicators, the global efficiency reduction rate η is 37.4% higher than the edge betweenness centrality, and the prediction error of the maximum connected component retention rate is controlled within 5%.

Key words: kill chain, complex network, key edge, Q-learning

中图分类号: