欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于变论域模糊自适应模型预测控制的智能汽车轨迹跟踪控制方法

何洋,李刚,冀凤标,周俊鹏   

  1. 辽宁工业大学 汽车与交通工程学院
  • 收稿日期:2025-01-07 修回日期:2025-06-02
  • 基金资助:
    国家自然科学基金项目(51675257);辽宁省自然科学基金面上项目(2022-MS-376);2024年辽宁省教育厅高校基本科研项目(LJ212410154021)

Intelligent Automobile Trajectory Tracking Control Method Based on Variable Universe Fuzzy Adaptive Model Predictive Control

HE Yang,LI Gang,JI Fengbiao,ZHOU Junpeng   

  1. School of Automobile and Traffic Engineering, Liaoning University of Technology
  • Received:2025-01-07 Revised:2025-06-02

摘要: 为提高智能汽车轨迹跟踪的实时性和自适应性,提出一种变论域模糊自适应模型预测控制(Variable Universe Fuzzy Adaptive Model Predictive Control, VUFAMPC)方法。采用强跟踪平方根容积卡尔曼滤波(Strong Tracking Square Root Cubature Kalman Filter, ST-SRCKF)算法估计轮胎侧向力,获取实时轮胎侧偏刚度值。在传统智能汽车模型预测控制方法基础上,引入变论域模糊控制(Variable Universe Fuzzy Control,VUFC)方法,设计变论域模糊模型预测控制器(Variable Universe Fuzzy Model Predictive Controller, VUFMPC),再结合ST-SRCKF算法将估计的轮胎侧偏刚度作为VUFMPC的参数,实现控制器参数自适应修正,进而获得VUFAMPC。最后,采用硬件在环试验方法对比分析,结果表明:汽车高速行驶时,相对于模型预测控制器(Fuzzy Model Predictive Controller, FMPC)、自适应模型预测控制方法(Adaptive Model Predictive Control, AMPC),VUFAMPC的超调量分别优化了11.1%和18.8%,过渡时间减少了46.6%和67.9%;轨迹跟踪试验结果显示,相对于FMPC、VUFMPC、AMPC,VUFAMPC的最大跟踪误差优化了73.9%、68.7%、24.8%,均值误差优化了72.3%、56.1%、28%。研究结果表明:VUFAMPC具有良好的实时性和自适应性,同时有效兼顾智能汽车的轨迹跟踪精度和行驶稳定性。

关键词: 智能汽车, 轨迹跟踪, 变论域, 自适应, 预测控制

Abstract: To improve the real-time and adaptive performance of intelligent automobile trajectory tracking, a method of variable universe adaptive fuzzy model predictive control (VUFAMPC) was proposed. Firstly,the strong tracking square root cubature kalman filter (ST-SRCKF) was used to estimate tire lateral force to obtain real-time tire lateral stiffness values. Secondly, according to the traditional method of model predictive control of trajectory tracking, a variable universe fuzzy control(VUFC) was used to design the variable universe fuzzy model predictive controller (VUFMPC) and combined it with ST-SRCKF, the estimated tire lateral stiffness was used as the parameters for VUFMPC to achieve adaptive correction of controller parameters, thereby obtaining VUFAMPC. Last, comparative analysis and verification through HIL experiment. The experiment result show that compared to FMPC and AMPC,the overshoot of VUFAMPC reduce by 11.1% and 18.8%, transition time reduce by 46.6% and 67.9%; the trajectory tracking tests shows:the maximum tracking error optimize by 73.9%,68.7%,24.8%, the average tracking error optimize by 72.3%,56.1%,28%. The conclusion indicates that VUFAMPC has better real-time and adaptive performance, while effectively balancing the accuracy of trajectory tracking and driving stability.

Key words: intelligent automobile, trajectory tracking, variable universe, adaptive, predictive control

中图分类号: