欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于弱耦合跨尺度方法的氟聚物基活性材料冲击力化响应行为

闫月光,葛超*,张勇,王晋,吕博宇,余庆波,王海福   

  1. 北京理工大学 爆炸科学与安全防护全国重点实验室
  • 收稿日期:2024-10-11 修回日期:2025-02-03
  • 基金资助:
    国家自然科学基金项目(12302460),爆炸科学与安全防护全国重点实验室基金项目(YBKT24-02)

Mechanochemical Response of Fluoropolymer-matrix Reactive Materials under Shock loading Based on Weak Coupling Trans-scale Method

YAN Yueguang,GE Chao*,ZHANG Yong,WANG Jin,LÜ Boyu,YU Qingbo,WANG Haifu   

  1. State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology
  • Received:2024-10-11 Revised:2025-02-03

摘要: 为了研究PTFE/Al/W氟聚物基活性材料冲击加载下的力化响应行为,开展氟聚物基活性材料落重冲击试验,提出弱耦合跨尺度数值计算方法,基于此方法建立宏-细观氟聚物基活性材料落重冲击加载反应过程的跨尺度数值仿真模型。结合跨尺度数值仿真对落重冲击试验的宏、细观结构力化响应行为及冲击激活机理进行讨论分析。分析结果表明:W含量对氟聚物基活性材料冲击激活反应影响显著,随着W含量增加,材料体系冲击激活阈值降低;弱耦合跨尺度数值仿真分析模型有效模拟了氟聚物基活性材料的力化响应过程;“X”型剪切带是氟聚物基活性材料破碎、激活引发反应的主要机制,其形成、演化和分布受W含量影响较大。

关键词: 活性材料, 落重冲击, 弱耦合跨尺度, 力化特性

Abstract: In order to study the mechanochemical response behavior of PTFE/Al/W fluoropolymer-matrix reactive materials under shock loading, the drop-weight impact test of fluoropolymer-matrix reactive materials was carried out, and a novel weak coupling trans-scale numerical calculation method was proposed. Based on this method, a trans-scale numerical simulation model of macro-meso scale fluoropolymer-matrix reactive material drop-weight impact loading reaction process was established. Combined with trans-scale numerical simulation, the macroscopic and mesoscopic structure mechanochemical response behavior and impact activation mechanism of the sample in the drop-weight impact test are discussed and analyzed. The results show that the content of W has a significant effect on the impact activation reaction of fluoropolymer-matrix reactive materials, with the increase of W content, the impact activation threshold of the reactive materials system decreases. The weak coupling trans-scale numerical simulation analysis model effectively simulates the mechanochemical response process of fluoropolymer-based reactive materials. The shear band is the dominant mechanism for the breakage and activation of fluoropolymer-based reactive materials, and its formation, evolution and distribution are greatly affected by W content.

Key words: reactive material, drop-weight impact, weak coupling trans-scale, mechanochemical properties

中图分类号: