欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

冲击波载荷下含裂纹复合固体推进剂动态响应及损伤演化研究

王冉1,张益铭1,郭松林1,王灏森1,王宁飞1,武毅1,2 *   

  1. (1. 北京理工大学 宇航学院, 北京100081; 2. 北京理工大学重庆创新中心, 重庆, 401100)
  • 收稿日期:2024-09-02 修回日期:2024-12-12
  • 通讯作者: 通信作者邮箱: yi.wu@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(U2341288)

Study on the Dynamic Response and Damage Evolution of Cracked Composite Solid Propellants Under Shock Wave Loading

WANG Ran1,ZHANG Yiming1, GUO Songlin1, WANG Haosen1, WANG Ningfei1 ,WU Yi1,2 *   

  1. (1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401100, China)
  • Received:2024-09-02 Revised:2024-12-12
  • Supported by:
    National Natural Science Foundation of China(U2341288)

摘要: 含有裂纹缺陷的固体推进剂在服役周期内受到冲击波载荷影响易引发裂纹扩展,严重影响固体推进剂的结构完整性。为探究端羟基聚丁二烯(HTPB)推进剂在不同冲击波强度下的动态力学响应和缺陷损伤演化行为,采用激波管装置,结合纹影成像和3D-DIC技术,在0.3至0.9 MPa的压力范围内,对无裂纹缺陷推进剂试样及含十字裂纹缺陷推进剂试样进行了冲击波加载实验,捕捉了推进剂的动态变形及损伤演化过程。结果表明,无裂纹缺陷试样变形呈抛物线形状,试样变形随冲击压力增大而增大。不同裂纹缺陷深度试样在0.9 MPa冲击压力下,呈现出不同程度的裂纹扩展,多重冲击会叠加损伤,临界失效裂纹深度比例为50 %~75 %。电子显微镜图像显示基体裂纹、颗粒脱粘和颗粒断裂是主要的失效机制。该结果对评估点火冲击条件下固体火箭发动机的结构完整性具有一定的参考价值。

关键词: 冲击波载荷, 预制损伤, 固体推进剂, 失效模式

Abstract: Solid propellants with crack defects are susceptible to crack propagation under shock wave loading during their service life, significantly compromising their structural integrity. To investigate the dynamic mechanical response and defect-induced damage evolution of hydroxyl-terminated polybutadiene (HTPB) propellants under varying shock wave intensities, a shock tube apparatus was employed, combined with schlieren imaging and 3D digital image correlation (3D-DIC) techniques. Shock wave loading experiments were conducted on both defect-free and crack-defected propellant specimens within a pressure range of 0.3 to 0.9 MPa, capturing the dynamic deformation and damage evolution processes. The results indicate that the deformation of the defect-free specimens exhibited a parabolic profile, with the maximum deformation showing an approximately linear relationship with the applied shock pressure. The specimens with different crack depth show different crack growth under 0.9 MPA impact pressure, and multiple impacts will result in superimposed damage. The critical failure crack depth ratio is 50% ~ 75% .Scanning electron microscopy images revealed that matrix cracking, particle debonding, and particle fracture were the primary failure mechanisms. These findings provide valuable insights for assessing the structural integrity of solid rocket motors under ignition shock conditions.

Key words: shock wave load, prefabricated damage, solid propellant, failure mode