欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于分布式凸优化的能量最优多向协同制导方法

王江1,2,朱梓杨1,2,李虹言1,2*(),王鹏1,2   

  1. (1. 北京理工大学 宇航学院,北京100081; 2. 北京理工大学 中国-阿联酋智能无人系统“一带一路”联合实验室,北京 100081)
  • 收稿日期:2024-08-27 修回日期:2025-04-21
  • 通讯作者: *通信作者邮箱:hongyan_ae@126.com
  • 基金资助:
    国家自然科学基金项目(61827901);中国博士后科学基金项目(2023M730169)

Energy-Optimal Relative-Angle-Constrained Cooperative Guidance by Distributed Convex Optimization

WANG Jiang1,2,ZHU Ziyang 1,2,LI Hongyan1,2*(),WANG Peng1,2   

  1. (1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. China-UAE Belt and Road Joint Laboratory on Intelligent Unmanned Systems, Beijing Institute of Technology,Beijing 100081, China)
  • Received:2024-08-27 Revised:2025-04-21

摘要: 多飞行器角度最优协同制导能够以最低能耗实现对机动目标的多向拦截,是制导领域的重要研究方向。现有最优协同制导方法需利用全局信息生成最优制导指令,故多采用集中式通信拓扑,而集中式通信可靠性较低,不利于实际应用。针对上述问题,本文基于分布式凸优化理论,提出一种分布式能量最优角度协同制导方法,以解决分布式信息局部性与协同指令全局最优性之间的矛盾。该方法基于广义弹道成型制导律(GTSG),通过解析推导飞行器控制能量与期望终端视线角的映射关系,以总控制能量为目标函数,并结合相对视线角约束构建分布式凸优化问题。提出扩展原始对偶算法(EPDA),实现分布式全局寻优,实时协调飞行器期望视线角,使多飞行器在GTSG作用下以最小能耗协同拦截目标。仿真结果及其分析表明,相比于现有的集中式角度协同制导算法,本文所提方法无需依赖中心节点,同时兼顾了全局能量最优性。

关键词: 协同制导, 相对视线角约束, 能量最优, 分布式凸优化, 原始对偶算法, 目标机动

Abstract: Multi-aircraft angle-optimal cooperative guidance enables multi-directional interception of maneuvering targets with minimal energy consumption, making it an important research direction in the field of guidance. Existing methods rely on global information and centralized communication, which suffer from low reliability in practical applications. To address the issue, this paper proposes an energy-optimal relative-angle-constrained cooperative guidance by distributed convex optimization. This method aims to resolve the contradiction between the locality of distributed information and the global optimality of cooperative commands. Based on the Generalized Trajectory Shaping Guidance Law (GTSG), the analytic mapping relationship between aircraft control energy and desired terminal line-of-sight (LOS) angles is derived. A convex objective function is formulated using total control energy, while convex constraints are established based on relative LOS angle constraints, thereby constructing a distributed convex optimization problem. The Extended Primal-Dual Algorithm (EPDA) is then introduced to achieve distributed global optimization, enabling real-time coordination of aircraft LOS angles for minimum-energy interception. The simulation results and analysis demonstrate that, compared with existing centralized angle-coordinated guidance algorithms, the proposed method eliminates reliance on a central node while ensuring global energy optimality.

Key words: cooperative guidance, relative LOS angle constraints, energy-optimal, distributed convex optimization, Primal-dual algorithm, maneuvering target