[1] |
XU L Z, REN W K, WANG X D, et al. Analytical investigation on deformation of PELE projectile and opening damage to concrete target[J]. Thin-Walled Structures, 2021, 161:107408.
|
[2] |
蒋建伟, 张谋, 等. 不同内核材料PELE弹丸对多层靶穿甲实验研究[J]. 北京理工大学学报, 2010, 30(9):1009-1012.
|
|
JIANG J W, ZHANG M, et al. Experimental study on multi-layered target penetration of PELE with different cores[J]. Transactions of Beijing Institute of Technology, 2010, 30(9):1009-1012. (in Chinese)
|
[3] |
王海福, 姬鹏远, 余庆波, 等. PELE斜侵彻有限厚靶板数值模拟[J]. 北京理工大学学报, 2010, 30(9):1017-1019,1041.
|
|
WANG H F, JI P Y, YU Q B, et al. Numerical simulation of oblique penetration of PELE into finite thickness plates[J]. Transactions of Beijing Institute of Technology, 2010, 30(9):1017-1019,1041. (in Chinese)
|
[4] |
LEI M A, WANG H F, YU Q B, et al. Fragmentation behavior of large-caliber PELE impacting RHA plate at low velocity[J]. Defence Technology, 2019, 15(6):912-922.
doi: 10.1016/j.dt.2019.04.004
|
[5] |
肖艳文, 徐峰悦, 郑元枫, 等. 冷压成型活性材料准静态压缩特性[J]. 北京理工大学学报, 2017, 37(4):337-341,347.
|
|
XIAO Y W, XU F Y, ZHENG Y F, et al. Quasistatic compression properties of cold isostatically pressed reactive materials[J]. Transactions of Beijing Institute of Technology, 2017, 37(4):337-341,347. (in Chinese)
|
[6] |
YU Q B, ZHANG J H, ZHAO H W, et al. Behind-plate overpressure effect of steel-encased reactive material projectile impacting thin aluminum plate[J]. Defence Technology, 2022, 18(5): 723-734.
doi: 10.1016/j.dt.2021.03.022
|
[7] |
TANG L, WANG H F, LU G C, et al. Mesoscale study on the shock response and initiation behavior of Al-PTFE granular composites[J]. Materials & Design, 2021, 200:109446.
|
[8] |
余庆波, 郭志荣, 钟世威, 等. 活性射流侵爆耦合毁伤效应分析[J]. 北京理工大学学报, 2021, 41(5):465-473.
|
|
YU Q B, GUO Z R, ZHONG S W, et al. Analysis of penetration and blast combined damage effects of reactive material jet[J]. Transactions of Beijing Institute of Technology, 2021, 41(5):465-473. (in Chinese)
|
[9] |
谢剑文, 李沛豫, 等. 活性破片撞击油箱毁伤行为与机理[J]. 兵工学报, 2022, 43(7):1565-1577.
doi: 10.12382/bgxb.2021.0384
|
|
XIE J W, LI P Y, et al. Damage behaviors and mechanisms of reactive fragments impacting fuel tanks[J]. Acta Armamentarii, 2022, 43(7):1565-1577. (in Chinese)
doi: 10.12382/bgxb.2021.0384
|
[10] |
ZHANG J H, WANG H F, ZHENG Y F, et al. Lateral enhancement effect of reactive PELE: two-step segmented simulation and analytical modeling[J]. Thin-Walled Structures, 2023, 192: 111204.
|
[11] |
PAULUS G, SCHIRM V. Impact behavior of PELE projectiles perforating thin target plates[J]. International Journal of Impact Engineering, 2006(1/12):33.
|
[12] |
VERREAULT J. Analytical and numerical description of the PELE fragmentation upon impact with thin target plates[J]. International Journal of Impact Engineering, 2015, 76:196-206.
|
[13] |
朱建生, 赵国志, 杜忠华. PELE与动能弹侵彻有限厚混凝土靶比较研究[J]. 兵器材料科学与工程, 2008, 31(4):59-63.
|
|
ZHU J S, ZHAO G Z, DU Z H. Study and comparison on normal penetration of PELE and KE projectile into finite-thickness concrete target[J]. Ordnance Material Science and Engineering, 2008, 31(4):59-63. (in Chinese)
|
[14] |
何俊, 徐立志, 程春, 等. 弹丸转速对PELE侵彻钢筋混凝土靶横向效应的影响[J]. 火炸药学报, 2017, 40(4):81-85.
doi: 10.14077/j.issn.1007-7812.2017.04.015
|
|
HE J, XU L Z, CHENG C, et al. Effect of projectile rate on lateral effect of PELE penetrating reinforced concrete target[J]. Chinese Journal of Explosive & Propellants, 2017, 40(4):81-85. (in Chinese)
|
[15] |
叶小军, 杜忠华, 胡传辉, 等. PELE侵彻破坏钢筋混凝土靶的数值计算与试验[J]. 火炸药学报, 2012, 35(4):86-90.
|
|
YE X J, DU Z H, HU C H, et al. Numerical calculation and experiment of PELE penetrated and broken reinforced concrete targets[J]. Chinese Journal of Explosive & Propellants, 2012, 35(4):86-90. (in Chinese)
|
[16] |
王树有, 蒋建伟, 张谋, 等. 活性内核PELE弹对多层靶毁伤效应实验研究[C]// 中国力学学会理性力学和力学中的数学方法专业委员会.第十二届现代数学和力学会议论文集. 中国贵阳, 中国力学学会, 2010:4.
|
|
WANGS Y, JIANGJ W, ZHANGM, et al. Experimental study on penetration of PELE with active core against multi-layered plates[C]// Professional Committee of Rational Mechanics and Mathematical Methods in Mechanics, Chinese Society of Theoretical and Applied Mechanics. Proceedings of the 12th Modern Mathematics and Mechanics Conference. Guiyang, China, The Chinese Society of Theoretical and Applied Mechanics, 2010:4. (in Chinese)
|
[17] |
LSDYNA. Keyword user’s manual[R]. Livermore, CA, US: Livermore Software Technology Corporation, 2020.
|
[18] |
JOHNSON G R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures[C]// Proceedings of the 7th International Symposium on Ballistics. Hague, the Netherlands: The Hague University of Applied Science, 1983: 541-547.
|
[19] |
DING L L, ZHOU J Y, TANG W H, et al. Research on the crushing process of PELE casing material based on the crack-softening algorithm and stochastic failure algorithm[J]. Materials, 2018, 11(9):1561.
|
[20] |
ROSENCRANTZ S D. Characterization and modeling methodology of polytetrafluoroethylene based reactive materials for the development of parametric models[D]. Dayton, OH, US: Wright State University, 2007.
|
[21] |
GUO X K, LI Y, MCCRUM D P, et al. A reinforced concrete shear wall building structure subjected to internal TNT explosions: test results and numerical validation[J]. International Journal of Impact Engineering, 2024, 190: 104950.
|
[22] |
ZHAO X H, YANG S H, JIA Y S, et al. Study on damage characteristics and mechanisms of arch concrete slabs with outer arch side facing water under inner-arch contact explosion[J]. International Journal of Impact Engineering, 2024, 191: 105007.
|
[23] |
GE C, YU Q B, ZHANG H, et al. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled PTFE reactive material using hat-shaped specimens[J]. Materials & Design, 2020, 188: 108472.
|