欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (10): 3718-3731.doi: 10.12382/bgxb.2023.0823

• • 上一篇    下一篇

基于地形特征时频变换的无人特种车辆速度自适应控制方法

王亮, 汪首坤*(), 牛天伟, 王军政   

  1. 北京理工大学 自动化学院, 北京 100081
  • 收稿日期:2023-08-29 上线日期:2024-03-18
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(QXZ23013202)

Speed Control Method for Unmanned Special Vehicle Based on Terrain Feature Time-frequency Transform

WANG Liang, WANG Shoukun*(), NIU Tianwei, WANG Junzheng   

  1. School of Automation, Beijing Institute of Technology, Beijing 100081, China
  • Received:2023-08-29 Online:2024-03-18

摘要:

为提高复杂环境下无人特种车辆安全性、自主性及作业能力,面向在崎岖地形下无人特种车辆应用需求,提出一种基于地形特征时频变换的速度自适应控制方法。通过度量地形特征崎岖度、建立崎岖度和车速数学模型,实现无人特种车辆在崎岖地形的自主、自适应车速规划。针对崎岖地形和坡度引起的点云数据失真问题,融合惯性测量单元传感器数据对点云进行补偿,获得了车辆前方地形的精准点云数据;针对可视距离与跟踪精度冲突问题,不同于传统横向曲率计算方式,采用以线到面的方式,将激光雷达纵向剖面点云数据进行时频变换后,在频域内选取次频区域的积分面积作为崎岖度量化值,实现对不同地形下的崎岖度量化;此外,基于上述获得的崎岖度,采用迭代搜索的方式建立速度与崎岖度数学模型,并采用滑动窗口的方式更新崎岖度,实现车速到崎岖度之间的连续映射。以可控震源野外勘探特种车为研究对象,采用上述方法在实际野外地形环境中进行多次实验。实验结果表明,所提出的方法在崎岖地形具有良好的安全性、自主性,可以识别地形和自适应控制车速。

关键词: 地形识别, 纵向剖面, 频域法, 崎岖度量化, 速度自适应控制

Abstract:

To ensure the safety, autonomy, and mobility of unmanned special vehicles in complex environments, a speed-adaptive control method based on terrain feature time-frequency transform is proposed for navigating the unmanned special vehicles on rugged terrains. The autonomy and adaptive speed planning of unmanned special vehicles on rugged terrains is achieved by measuring the ruggedness of terrain and establishing a continuous mathematical model of terrain ruggedness and vehicle speed. The point cloud data is corrected through the fusion of inertial measurement unit (IMU) sensor data. This correction ensures the precision of the point cloud data in front of the vehicle, addressing the issues arising from rocky terrain and slopes. Subsequently, a line-to-surface approach is employed to quantify the ruggedness across various terrains, which is diferent from the traditional transverse curvature calculation. The ruggedness value is determined by choosing the integrated area of the sub-frequency region in the frequency domain after the time-frequency transformation of LIDAR longitudinal profile point cloud data. Moreover, a mathematical model for speed and terrain ruggedness is established through an iterative search based on the quantified ruggedness values. The ruggedness value is continuously updated using a sliding window, facilitating the seamless mapping between vehicle speed and terrain ruggedness. The proposed method is then validated utilizing a seismic vibrator vehicle as the research subject through a series of experiments conducted in actual field terrain environments. The experimental results affirm the effectiveness of the proposed method in terrain identification and adaptive vehicle speed control.

Key words: terrain identification, longitudinal profile, frequency domain method, roughness quantification, speed adaptive control

中图分类号: