[1] |
尹光辉, 何泽南, 孙铜锴. 基于层次分析法的合成部队信火打击能力评估[J]. 火力与指挥控制, 2020, 45(12):107-110.
|
|
YIN G H, HE Z N, SUN T K. Information and fire attack capability evaluation of synthetic forces based on analytic hierarchy process[J]. Fire Control & Command Control, 2020, 45(12):107-110. (in Chinese)
|
[2] |
彭佳, 杨兵, 李武军. 基于灰软集的四维灰靶决策模型在网电一体作战方案优选中的应用[J]. 信息工程大学学报, 2021, 22(5):635-640.
|
|
PENG J, YANG B, LI W J. Application of four-dimensional grey target decision model based on grey soft set in optimization of network-electric integrated combat scheme[J]. Journal of University of Information Engineering, 2021, 22(5):635-640. (in Chinese)
|
[3] |
代森强, 田尚保, 袁聪. 基于能力需求匹配的联合战术行动兵力筹划方法[J]. 空军预警学院学报, 2021, 35(2):137-140.
|
|
DAI S Q, TIAN S B, YUAN C. Force planning method for joint tactical operations based on capability requirement matching[J]. Journal of the Air Force Early Warning Academy, 2021, 35(2):137-140. (in Chinese)
|
[4] |
刘遵飞, 邹波, 陈续麟, 等. 有人与无人联合作战模式下的装备体系结构建模与效能评估[J]. 兵工学报, 2022, 43(增刊1):155-161.
|
|
LIU Z F, ZOU B, CHEN X L, et al. Architecture modeling and effectiveness evaluation of equipment system under manned and unmanned joint operation mode[J]. Acta Armamentarii, 2022, 43(S1):155-161. (in Chinese)
doi: 10.12382/bgxb.2022.A027
|
[5] |
祝学军, 赵长见, 梁卓, 等. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(4):16-25.
|
|
ZHU X J, ZHAO C J, LIANG Z, et al. Thoughts on the development of OODA intelligent enabling technology[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):16-25. (in Chinese)
|
[6] |
KRAUS S, KANBACH D K, KRYSTA P M, et al. Facebook and the creation of the metaverse:radical business model innovation or incremental transformation[J]. International Journal of Entrepreneurial Behavior & Research, 2022, 28(9): 52-77.
|
[7] |
闫野, 印二威, 张皓洋, 等. 元宇宙军事运用潜力探索[J]. 指挥与控制学报, 2022, 8(3):235-238.
|
|
YAN Y, YIN E W, ZHANG H Y, et al. Exploration of military application potential of metaverse[J]. Journal of Command and Control, 2022, 8(3):235-238. (in Chinese)
|
[8] |
赵玉桐, 杨建林. 基于跨领域专利的颠覆性技术识别研究-以人工智能领域为例[J]. 情报理论与实践, 2023, 46(3):174-182.
|
|
ZHAO Y T, YANG J L. Research on disruptive technology recognition based on cross-domain patents-a case study of artificial intelligence[J]. Information Studies:Theory & Application, 2023, 46(3):174-182. (in Chinese)
|
[9] |
田鹏, 左大义, 高艳春, 等. 面向实际场景的人工智能脆弱性分析[J]. 计算机技术与发展, 2021, 31(11):129-135.
|
|
TIAN P, ZUO D Y, GAO Y C, et al. Artificial intelligence vulnerability analysis for practical scenarios[J]. Computer Technology and Development, 2021, 31(11):129-135. (in Chinese)
|
[10] |
KELLER J. DARPA seeks to apply trusted computing to artificial intelligence and machine learning models[J]. Military & Aerospace Electronics, 2019, 30(1):8-9.
|
[11] |
陈刚, 姚丽亚, 王国新, 等. 面向鲁棒决策的战场态势评估人机共识形成方法[J]. 兵工学报, 2022, 43(11):2953-2964.
doi: 10.12382/bgxb.2021.0557
|
|
CHEN G, YAO L Y, WANG G X, et al. A human-machine consensus formation method for robust decision making in battlefield situation assessment[J]. Acta Armamentarii, 2022, 43(11):2953-2964. (in Chinese)
doi: 10.12382/bgxb.2021.0557
|
[12] |
LYNN M, DAVID A, LOUIS R. Keeping humans in the loop : pooling knowledge through artificial swarm Intelligence to improve business decision making[J]. California Management Review, 2019, 61(4):84-109.
|
[13] |
ULRICH M N, KURT E, KAMPHUES J. Machine learning and statistics: a study for assessing innovative demand forecasting models[J]. Procedia Computer Science, 2021, 180(1):23-33.
|
[14] |
EDWARD E O, NPROMISE A N. Managing uncertainty in artificial intelligence and expert systems using Bayesian theory and probabilistic reasoning[J]. American Journal of Engineering Research, 2020, 9(3):11-18.
|
[15] |
JENNINGS G. DARPA to brief industry on ACE manned/ unmanned dogfighting programme[J]. Jane's Defence Weekly, 2019, 56(20):11.
|
[16] |
KELLER J. DARPA eyes artificial intelligence(Al) and unmanned aircraft in jet fighter dogfighting[J]. Military & Aerospace Electronics, 2019, 30(6):30.
|
[17] |
李德栋, 曹建. 对美国忠诚僚机的思考及对策建议[J]. 国防科技, 2020, 41(4):19-22.
|
|
LI D D, CAO J. Thoughts and suggestions on the faithful wingman of the United States[J]. National Defense Technology, 2020, 41(4):19-22. (in Chinese)
|
[18] |
ZHOU K, WEI R X, ZHANG Q R, et al. Learning system for air combat decision inspired by cognitive mechanisms of the brain[J]. Quality Control, Transactions, 2020, 8:8129-8144.
|
[19] |
田银, 徐鹏. 脑电与认知神经科学[M]. 北京: 科学出版社, 2020.
|
|
TIAN Y, XU P. EEG and cognitive neuroscience[M]. Beijing: Science Press, 2020. (in Chinese)
|
[20] |
王文喜, 周芳, 万月亮, 等. 元宇宙技术综述[J]. 工程科学学报, 2022, 44(4): 744-756.
|
|
WANG W X, ZHOU F, WAN Y L, et al. A review of metaverse technology[J]. Journal of Engineering Science, 2022, 44(4): 744-756. (in Chinese)
|
[21] |
纪广, 郝建国, 张振伟. 面向无人机作战的虚拟孪生系统设计方案[J]. 兵工学报, 2022, 43(8):1902-1912.
|
|
JI G, HAO J G, ZHANG Z W. Designscheme of virtual twin system for UAV combat[J]. Acta Armamentarii, 2022, 43(8):1902-1912. (in Chinese)
|
[22] |
赵国栋, 易欢欢, 徐远重. 元宇宙[M]. 北京: 中译出版社, 2021.
|
|
ZHAO G D, YI H H, XU Y Z. The metaverse[M]. Beijing: Chinese Translation Press, 2021. (in Chinese)
|
[23] |
周芳, 毛少杰, 吴云超, 等. 实时态势数据驱动的平行仿真推演方法[J]. 中国电子科学研究院学报, 2020, 15(4):323-328.
|
|
ZHOU F, MAO S J, WU Y C, et al. Real-time situation data-driven parallel simulation deduction method[J]. Journal of Chinese Academy of Electronic Sciences, 2020, 15(4):323-328. (in Chinese)
|