[1] |
WANG Z P, YIN Y, SONG D, et al. Dual smoothing ionospheric gradient monitoring algorithm for dual-frequency BDS GBAS[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3395-3404.
doi: 10.1016/j.cja.2020.04.030
URL
|
[2] |
FELUX M, CIRCIU M S, LEE J Y, et al. Ionospheric gradient threat mitigation in future dual frequency GBAS[J]. International Journal of Aerospace Engineering, 2017, 2017: 4326018.
|
[3] |
谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2017.
|
|
XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics Industry, 2017. (in Chinese)
|
[4] |
PATEL J, KHANAFSEH S, PERVAN B. Detecting hazardous spatial gradients at satellite acquisition in GBAS[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 3214-3230.
doi: 10.1109/TAES.7
URL
|
[5] |
薛瑞. 多频卫星导航系统完好性研究[D]. 北京: 北京航空航天大学, 2010: 17-18.
|
|
XUE R. Research on integrity of multi-frequency GNSS[D]. Beijing: Beihang University, 2010: 17-18. (in Chinese)
|
[6] |
ICAO. Annex 10, aeronautical telecommunications,Volume 1: radio navigation aids[S]. Montreal, Canada:ICAO, 2009.
|
[7] |
袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378.
doi: 10.11947/j.AGCS.2017.20170349
|
|
YUAN Y B, HUO X L, ZHANG B C. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1364-1378. (in Chinese)
doi: 10.11947/j.AGCS.2017.20170349
|
[8] |
石先武, 方伟华, 林伟, 等. 基于极值理论的中国台风降水分布不确定性分析[J]. 北京师范大学学报(自然科学版), 2011, 47(5): 493-501.
|
|
SHI X W, FANG W H, LIN W, et al. Uncertainty of China typhoon rainfall probability estimation with different extreme-value models[J]. Journal of Beijing Normal University (Natural Science), 2011, 47(5): 493-501. (in Chinese)
|
[9] |
李红权, 何敏园, 黄莹莹. 我国金融机构的系统重要性评估:基于多元极值理论[J]. 中国管理科学, 2020, 28(5): 14-24.
|
|
LI H Q, HE M Y, HUANG Y Y. The evaluation of systemically important financial institute of China: based on multivariate extreme value theory[J]. Chinese Journal of Management Science, 2020, 28(5): 14-24. (in Chinese)
|
[10] |
伍强, 徐浩军, 裴彬彬, 等. 基于吸引域与二元极值理论的结冰飞机飞行风险量化评估[J]. 航空学报, 2022, 43(5): 186-200.
|
|
WU Q, XU H J, PEI B B, et al. Quantitative evaluation of flight risk of icing aircraft based on theory of region of attraction and binary extreme value[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 186-200. (in Chinese)
|
[11] |
巫诚诚. 基于极值理论的城市交叉口非机动车交通冲突模型研究[D]. 南京: 东南大学, 2021: 45-49.
|
|
WU C C. Research of traffic conflict models between non-motor and motor in the intersection based on extreme theory[D]. Nanjing: Southeast University, 2021: 45-49. (in Chinese)
|
[12] |
OBER P B, IMPARATO D, VERHAGEN S, et al. Empirical integrity verification of GNSS and SBAS based on the extreme value theory[J]. Journal of the Institute of Navigation, 2014, 61(1): 23-38.
|
[13] |
KANNEMANS H. The generalized extreme value statistical method to determine the GNSS integrity performance[C]//Proceedings of the 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing. Noordwijk, Netherlands: IEEE, 2010.
|
[14] |
ZHU Y B, LIU Y, WANG Z P, et al. Evaluation of GBAS flight trials based on BDS and GPS[J]. IET Radar, Sonar & Navigation, 2020, 14(2): 233-241.
doi: 10.1049/rsn2.v14.2
URL
|
[15] |
胡杰, 章林, 朱倚娴, 等. 基于码载偏离度的改进自适应Hatch滤波算法[J]. 兵工学报, 2021, 42(3): 555-562.
doi: 10.3969/j.issn.1000-1093.2021.03.011
|
|
HU J, ZHANG L, ZHU Y X, et al. Improved adaptive Hatch filter algorithm based on code-carrier divergence[J]. Acta Armamentarii, 2021, 42(3): 555-562. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.03.011
|
[16] |
石潇竹, 梁宸宇, 胡杰, 等. 基于北斗接收机多参考一致性B值阈值计算方法[J]. 探测与控制学报, 2020, 42(3): 31-34, 43.
|
|
SHI X Z, LIANG C Y, HU J, et al. Beidou receivers’ B-value threshold multiple reference consistency computing method[J]. Journal of Detection & Control, 2020, 42(3): 31-34, 43. (in Chinese)
|
[17] |
胡杰, 周玲, 朱倚娴. 双频双星座地基增强系统精度和完好性算法[J]. 导航定位与授时, 2020, 7(5): 82-90.
|
|
HU J, ZHOU L, ZHU Y X. Performance evaluation and integrity algorithm of dual-frequency dual-constellation ground based augmentation system[J]. Navigation Position & Timing, 2020, 7(5): 82-90. (in Chinese)
|
[18] |
CIRCIU M, MEURER M, FELUX M, et al. Evaluation of GPS L5 and Galileo E1 and E5a performance for future multifrequency and multiconstellation GBAS[J]. Journal of the Institute of Navigation, 2017, 64(1): 149-163.
|
[19] |
DAUTERMANN T, MAYER C, ANTREICH F, et al. Non-Gaussian error modeling for GBAS integrity assessment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 693-706.
doi: 10.1109/TAES.2012.6129664
URL
|
[20] |
胡杰, 周玲. 基于GPS的地基增强系统机载端完好性算法研究[J]. 大地测量与地球动力学, 2020, 40(10): 1007-1011.
|
|
HU J, ZHOU L. Research on airborne integrity algorithm for ground based augmentation system based on GPS[J]. Journal of Geodesy and Geodynamics, 2020, 40(10): 1007-1011. (in Chinese)
|
[21] |
孙颢, 石潇竹, 刘海颖, 等. 基于多参数稳定分布的GBAS垂直保护级计算[J]. 系统工程与电子技术, 2021, 43(4): 1030-1035.
doi: 10.12305/j.issn.1001-506X.2021.04.20
|
|
SUN H, SHI X Z, LIU H Y, et al. Calculation of GBAS vertical protection level based on multi-parameter stable distribution[J]. Systems Engineering and Electronics, 2021, 43(4): 1030-1035. (in Chinese)
|
[22] |
WANG Z P, MACABIAU C, ZHANG J, et al. Prediction and analysis of GBAS integrity monitoring availability at LinZhi airport[J]. GPS Solutions, 2014, 18: 27-40.
doi: 10.1007/s10291-012-0306-4
URL
|
[23] |
DIMITRI P, ARNAB M, WASHINGTON Y O. Extreme value theory-based integrity monitoring of global navigation satellite systems[J]. GPS Solutions, 2014, 18: 133-145.
doi: 10.1007/s10291-013-0317-9
URL
|
[24] |
FAA. Siting criteria for ground based augmentation system (GBAS): 6884.1[S]. Washington, DC, US: FAA, 2010.
|
[25] |
Minimum operational performance standards for GPS local area augmentation system airborne equipment:RTCA DO-253[S]. Washington, DC, US:RTCA, 2017.
|