[1] |
杨素兰, 张皓瑞, 聂洪奇, 等. Al/Ti基纳米复合燃料热反应性及燃烧性能[J]. 兵工学报, 2023, 44(4):1118-1125.
|
|
YANG S L, ZHANG H R, NIE H Q, et al. Thermal reactivity and combustion performances of Al /Ti-based nano-composite fuels[J]. Acta Armamentarii, 2023, 44(4):1118-1125. (in Chinese)
|
[2] |
徐瑞泽, 肖建光, 马俊杨, 等. 活性破片高速撞击产生等离子体的毁伤效应[J]. 兵工学报, 2023, 44(12):3733-3742.
|
|
XU R Z, XIAO J G, MA J Y, et al. Damage effect of plasma produced by high-velocity impact of reactive fragments[J]. Acta Armamentarii, 2023, 44(12):3733-3742. (in Chinese)
|
[3] |
王在成, 徐祎, 姜春兰, 等. 钨锆钛活性破片对间隔靶的毁伤效应[J]. 兵工学报, 2023, 44(12):3862-3871.
|
|
WANG Z C, XU Y, JIANG C L, et al. Damage effect of W/Zr/Ti reactive fragments on spaced targets[J]. Acta Armamentarii, 2023, 44(12):3862-3871. (in Chinese)
|
[4] |
HE B, HAN Z W, WANG J Y, et al. Construction of Al@PTFE composites with excellent ignition and combustion properties through mechanical and thermal activation[J]. Journal of Alloys and Compounds, 2024, 987:174178.
|
[5] |
MAO Y F, HE Q Q, WANG J, et al. Tuning energy output of PTFE/Al composite materials through gradient structure[J]. Defence Technology, 2023, 26:134-142.
|
[6] |
AMES R. Energy release characteristics of impact-initiated energetic materials[J]. MRS Proceedings, 2005, 896:0896-H03-08.
|
[7] |
AMES R. Vented chamber calorimetry for impact-initiated energetic materials[C]// Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit.Reno,NV,US:AIAA, 2005:AIAA2005-279.
|
[8] |
CHEN C, TANG E L, ZHU W J, et al. Modified model of Al/PTFE projectile impact reaction energy release considering energy loss[J]. Experimental Thermal and Fluid Science, 2020, 116:110132.
|
[9] |
XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites[J]. The Journal of Physical Chemistry C, 2016, 120(43):24551-24559.
|
[10] |
DING L L, ZHOU J Y, TANG W H, et al. Impact energy release characteristics of PTFE/Al/CuO reactive materials measured by a new energy release testing device[J]. Polymers, 2019, 11(1):149.
|
[11] |
WANG S, KLINE J, MILES B, et al. Reactive fragment materials made from an aluminum-silicon eutectic powder[J]. Journal of Applied Physics, 2020, 128(6):065903.
|
[12] |
HOU X W, ZHANG X F, XIONG W, et al. Study on energy release characteristics and penetration effects to concrete targets of Hf-based amorphous alloys[J]. Journal of Non-Crystalline Solids, 2022, 581:121438.
|
[13] |
ZHOU J, ZHAO X F, WANG S H, et al. An approach to distinguish chemical and kinetic energy of reactive materials:PTFE/LiF as an inert substitute to PTFE/Al[J]. Propellants,Explosives,Pyrotechnics, 2024, 49(5):e202300307.
|
[14] |
LIU S B, ZHENG Y F, YU Q B, et al. Interval rupturing damage to multi-spaced aluminum plates impacted by reactive materials filled projectile[J]. International Journal of Impact Engineering, 2019, 130:153-162.
|
[15] |
XU F Y, GENG B Q, ZHANG X P, et al. Experimental study on behind-plate overpressure effect by reactive material projectile[J]. Propellants,Explosives,Pyrotechnics, 2017, 42(2):192-197.
|
[16] |
XU F Y, YU Q B, ZHENG Y F, et al. Damage effects of double-spaced aluminum plates by reactive material projectile impact[J]. International Journal of Impact Engineering, 2017, 104:13-20.
|
[17] |
XU F Y, ZHENG Y F, YU Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate[J]. International Journal of Impact Engineering, 2016, 95:125-132.
|
[18] |
YUANG Y, CAI Y Q, GUO H G, et al. Time-sequenced damage behavior of reactive projectile impacting double-layer plates[J]. Defence Technology, 2023, 27:263-272.
|
[19] |
WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass[J]. Intermetallics, 2018, 93:383-388.
|
[20] |
JI C, HE Y, WANG C T, et al. Effect of dynamic fragmentation on the reaction characteristics of a Zr-based metallic glass[J]. Journal of Non-Crystalline Solids, 2019, 515:149-156.
|
[21] |
TANG M G, HOOPER J P. Impact fragmentation of a brittle metal compact[J]. Journal of Applied Physics, 2018, 123(17):175901.
|
[22] |
KLINE J, HOOPER J P. The effect of annealing on the impact fragmentation of a pure aluminum reactive material[J]. Journal of Applied Physics, 2019, 125(20):205901.
|
[23] |
ZHANG F, GAUTHIER M, COJOCARU C V. Dynamic fragmentation and blast from a reactive material[J]. Propellants,Explosives,Pyrotechnics, 2017, 42(9):1072-1078.
|
[24] |
KLINE J, MASON B P, HOOPER J P. Energy release and fragmentation of brittle aluminum reactive material cases[J]. Propellants,Explosives,Pyrotechnics, 2021, 46(8):1324-1333.
|
[25] |
BLAISDELL G L, MELENDY T D, BLAISDELL M N. Ballistic protection using snow[J]. International Journal of Impact Engineering, 2021, 155:103903.
|
[26] |
PALMER S. Three-dimensional fragment tracking and size estimation using stereo focused shadowgraphy[D]. Socorro,NM,US: New Mexico Institute of Mining and Technology, 2022.
|
[27] |
YOUNGBLOOD S, PALMER S, VIOLANTE D A, et al. In situ measurement of the fragmentation behavior of Al/PTFE reactive materials subjected to explosive loading,Part 1:fragment size measurements[J]. Propellants,Explosives,Pyrotechnics, 2023, 48(1):e202200103.
|
[28] |
PALMER S, YOUNGBLOOD S, KIMBERLEY J, et al. In situ measurement of the fragmentation behavior of Al/PTFE reactive materials subjected to explosive loading,Part 2:fragment velocity and trajectory measurements[J]. Propellants,Explosives,Pyrotechnics, 2023, 48(1):e202200104.
|
[29] |
李航. 统计学习方法[M]. 第2版. 北京: 清华大学出版社, 2019.
|
|
LI H. Statistical learning method[M]. 2nd ed. Beijing: Tsinghua University Press, 2019. (in Chinese)
|
[30] |
ZHAO K X, ZHANG X H, GU X R, et al. Tungsten combustion in impact initiated W-Al composite based on W(Al) super-saturated solid solution[J]. Defence Technology, 2022, 25:112-120.
|
[31] |
GROMOV A A, PAUTOVA Y I, LIDER A M, et al. Interaction of powdery al,Zr and Ti with atmospheric nitrogen and subsequent nitride formation under the metal powder combustion in air[J]. Powder Technology, 2011, 214(2):229-236.
|
[32] |
DREIZIN E L, SCHOENITZ M. Correlating ignition mechanisms of aluminum-based reactive materials with thermoanalytical measurements[J]. Progress in Energy and Combustion Science, 2015, 50:81-105.
|
[33] |
WANG S, KLINE J, MILES B, et al. Reactive fragment materials made from an aluminum-silicon eutectic powder[J]. Journal of Applied Physics, 2020, 128(6):065903.
|
[34] |
VOJTECH D, CIZOVA H, JUREK K, et al. Influence of silicon on high-temperature cyclic oxidation behaviour of titanium[J]. Journal of Alloys and Compounds, 2005, 394(1):240-249.
|
[35] |
DEBSKI A, GASIOR W, SYPIEN A, et al. Enthalpy of formation of intermetallic phases from Al-Ni and Al-Ni-Ti systems[J]. Intermetallics, 2013, 42:92-98.
|