Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (11): 3508-3515.doi: 10.12382/bgxb.2022.1167
Special Issue: 群体协同与自主技术
Previous Articles Next Articles
GUO Yonghong1, NIU Haitao1, SHI Chao1,2,*(), GUO Cheng1
Received:
2022-11-30
Online:
2023-11-07
Contact:
SHI Chao
CLC Number:
GUO Yonghong, NIU Haitao, SHI Chao, GUO Cheng. Few-shot Object Detection Based on Convolution Network and Attention Mechanism[J]. Acta Armamentarii, 2023, 44(11): 3508-3515.
Add to citation manager EndNote|Ris|BibTeX
算法 | 新类 子集 | 样本数 | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 5 | 10 | |||
split1 | 6.6 | 10.7 | 12.5 | 24.8 | 38.6 | ||
YOLO-ft[ | split2 | 12.5 | 4.2 | 11.6 | 16.1 | 33.9 | |
split3 | 13 | 15.9 | 15 | 32.2 | 38.4 | ||
split1 | 13.8 | 19.6 | 32.8 | 41.5 | 45.6 | ||
FRCN-ft[ | split2 | 7.9 | 15.3 | 26.2 | 31.6 | 39.1 | |
split3 | 9.8 | 11.3 | 19.1 | 35 | 45.1 | ||
split1 | 14.8 | 15.5 | 26.7 | 33.9 | 47.2 | ||
FSRW[ | split2 | 15.7 | 15.2 | 22.7 | 30.1 | 40.5 | |
split3 | 21.3 | 25.6 | 28.4 | 42.8 | 45.9 | ||
split1 | 18.9 | 20.6 | 30.2 | 36.8 | 49.6 | ||
MetaDet[ | split2 | 21.8 | 23.1 | 27.8 | 31.7 | 43 | |
split3 | 20.6 | 23.9 | 29.4 | 43.9 | 44.1 | ||
split1 | 19.9 | 25.5 | 35 | 45.7 | 51.5 | ||
Meta R-CNN[ | split2 | 10.4 | 19.4 | 29.6 | 34.8 | 45.4 | |
split3 | 14.3 | 18.2 | 27.5 | 41.2 | 48.1 | ||
split1 | 39.8 | 36.1 | 44.7 | 55.7 | 56 | ||
TFA[ | split2 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | |
split3 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 | ||
split1 | 41.7 | 51.4 | 55.2 | 61.8 | |||
MPSR[ | split2 | 24.4 | 39.2 | 39.9 | 47.8 | ||
split3 | 35.6 | 42.3 | 48 | 49.7 | |||
split1 | 44.2 | 43.8 | 51.4 | 61.9 | 63.4 | ||
FSCE[ | split2 | 27.3 | 29.5 | 43.5 | 44.2 | 50.2 | |
split3 | 37.2 | 41.9 | 47.5 | 54.6 | 58.5 | ||
split1 | 41.5 | 47.5 | 50.4 | 58.2 | 60.9 | ||
CME[ | split2 | 27.2 | 30.2 | 41.4 | 42.5 | 46.8 | |
split3 | 34.3 | 39.6 | 45.1 | 48.3 | 51.5 | ||
split1 | 53.6 | 57.5 | 61.5 | 64.1 | 60.8 | ||
DeFRCN[ | split2 | 30.1 | 38.1 | 47 | 53.3 | 47.9 | |
split3 | 48.4 | 50.9 | 52.3 | 54.9 | 57.4 | ||
split1 | 55.1 | 57.4 | 61.1 | 64.6 | 61.5 | ||
DeFRCN★[ | split2 | 32.6 | 39.6 | 48.1 | 53.8 | 49.2 | |
split3 | 48.9 | 51.9 | 52.3 | 55.7 | 59 | ||
split1 | 41.8 | 46.7 | 52.7 | 59.6 | 62.3 | ||
Meta-FR-CNN[ | split2 | 26.1 | 33.6 | 43.8 | 47.8 | 50.1 | |
split3 | 35.6 | 42.1 | 45.8 | 53.4 | 52.3 | ||
split1 | 40.6 | 51.4 | 58.0 | 59.2 | 63.6 | ||
Meta-DETR[ | split2 | 37.0 | 36.6 | 43.7 | 49.1 | 54.6 | |
split3 | 41.6 | 45.9 | 52.7 | 58.9 | 60.6 | ||
split1 | 56 | 59.3 | 63.1 | 66 | 62.6 | ||
本文方法 | split2 | 33.3 | 41 | 49.4 | 55.2 | 49.9 | |
split3 | 49.8 | 53.8 | 53.9 | 56.5 | 59.9 |
Table 1 nAP50 of Pascal VOC Novel dataset %
算法 | 新类 子集 | 样本数 | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 5 | 10 | |||
split1 | 6.6 | 10.7 | 12.5 | 24.8 | 38.6 | ||
YOLO-ft[ | split2 | 12.5 | 4.2 | 11.6 | 16.1 | 33.9 | |
split3 | 13 | 15.9 | 15 | 32.2 | 38.4 | ||
split1 | 13.8 | 19.6 | 32.8 | 41.5 | 45.6 | ||
FRCN-ft[ | split2 | 7.9 | 15.3 | 26.2 | 31.6 | 39.1 | |
split3 | 9.8 | 11.3 | 19.1 | 35 | 45.1 | ||
split1 | 14.8 | 15.5 | 26.7 | 33.9 | 47.2 | ||
FSRW[ | split2 | 15.7 | 15.2 | 22.7 | 30.1 | 40.5 | |
split3 | 21.3 | 25.6 | 28.4 | 42.8 | 45.9 | ||
split1 | 18.9 | 20.6 | 30.2 | 36.8 | 49.6 | ||
MetaDet[ | split2 | 21.8 | 23.1 | 27.8 | 31.7 | 43 | |
split3 | 20.6 | 23.9 | 29.4 | 43.9 | 44.1 | ||
split1 | 19.9 | 25.5 | 35 | 45.7 | 51.5 | ||
Meta R-CNN[ | split2 | 10.4 | 19.4 | 29.6 | 34.8 | 45.4 | |
split3 | 14.3 | 18.2 | 27.5 | 41.2 | 48.1 | ||
split1 | 39.8 | 36.1 | 44.7 | 55.7 | 56 | ||
TFA[ | split2 | 23.5 | 26.9 | 34.1 | 35.1 | 39.1 | |
split3 | 30.8 | 34.8 | 42.8 | 49.5 | 49.8 | ||
split1 | 41.7 | 51.4 | 55.2 | 61.8 | |||
MPSR[ | split2 | 24.4 | 39.2 | 39.9 | 47.8 | ||
split3 | 35.6 | 42.3 | 48 | 49.7 | |||
split1 | 44.2 | 43.8 | 51.4 | 61.9 | 63.4 | ||
FSCE[ | split2 | 27.3 | 29.5 | 43.5 | 44.2 | 50.2 | |
split3 | 37.2 | 41.9 | 47.5 | 54.6 | 58.5 | ||
split1 | 41.5 | 47.5 | 50.4 | 58.2 | 60.9 | ||
CME[ | split2 | 27.2 | 30.2 | 41.4 | 42.5 | 46.8 | |
split3 | 34.3 | 39.6 | 45.1 | 48.3 | 51.5 | ||
split1 | 53.6 | 57.5 | 61.5 | 64.1 | 60.8 | ||
DeFRCN[ | split2 | 30.1 | 38.1 | 47 | 53.3 | 47.9 | |
split3 | 48.4 | 50.9 | 52.3 | 54.9 | 57.4 | ||
split1 | 55.1 | 57.4 | 61.1 | 64.6 | 61.5 | ||
DeFRCN★[ | split2 | 32.6 | 39.6 | 48.1 | 53.8 | 49.2 | |
split3 | 48.9 | 51.9 | 52.3 | 55.7 | 59 | ||
split1 | 41.8 | 46.7 | 52.7 | 59.6 | 62.3 | ||
Meta-FR-CNN[ | split2 | 26.1 | 33.6 | 43.8 | 47.8 | 50.1 | |
split3 | 35.6 | 42.1 | 45.8 | 53.4 | 52.3 | ||
split1 | 40.6 | 51.4 | 58.0 | 59.2 | 63.6 | ||
Meta-DETR[ | split2 | 37.0 | 36.6 | 43.7 | 49.1 | 54.6 | |
split3 | 41.6 | 45.9 | 52.7 | 58.9 | 60.6 | ||
split1 | 56 | 59.3 | 63.1 | 66 | 62.6 | ||
本文方法 | split2 | 33.3 | 41 | 49.4 | 55.2 | 49.9 | |
split3 | 49.8 | 53.8 | 53.9 | 56.5 | 59.9 |
算法 | 样本数 | |
---|---|---|
10 | 30 | |
FRCN-ft[ | 6.5 | 11.1 |
FSRW[ | 5.6 | 9.1 |
MetaDet[ | 7.1 | 11.3 |
Meta R-CNN[ | 8.7 | 12.4 |
TFA[ | 10.0 | 13.7 |
MPSR[ | 9.8 | 14.1 |
FSDetView[ | 12.5 | 14.7 |
FSCE[ | 11.9 | 16.4 |
CME[ | 15.1 | 16.9 |
DeFRCN[ | 18.5 | 22.6 |
DeFRCN★[ | 18.4 | 22.7 |
本文方法 | 19.1 | 23.3 |
Table 2 mAP of COCO dataset %
算法 | 样本数 | |
---|---|---|
10 | 30 | |
FRCN-ft[ | 6.5 | 11.1 |
FSRW[ | 5.6 | 9.1 |
MetaDet[ | 7.1 | 11.3 |
Meta R-CNN[ | 8.7 | 12.4 |
TFA[ | 10.0 | 13.7 |
MPSR[ | 9.8 | 14.1 |
FSDetView[ | 12.5 | 14.7 |
FSCE[ | 11.9 | 16.4 |
CME[ | 15.1 | 16.9 |
DeFRCN[ | 18.5 | 22.6 |
DeFRCN★[ | 18.4 | 22.7 |
本文方法 | 19.1 | 23.3 |
DeFRCN | HDC | SFDF | 样本数 | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 5 | 10 | |||
√ | 55.1 | 57.4 | 61.1 | 64.6 | 61.5 | ||
√ | √ | 56 | 58.3 | 62 | 65.3 | 62.3 | |
√ | √ | 55.1 | 58.7 | 62.6 | 65.4 | 62 | |
√ | √ | √ | 56 | 59.3 | 63.1 | 66 | 62.6 |
Table 3 Results of ablation experiment
DeFRCN | HDC | SFDF | 样本数 | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 5 | 10 | |||
√ | 55.1 | 57.4 | 61.1 | 64.6 | 61.5 | ||
√ | √ | 56 | 58.3 | 62 | 65.3 | 62.3 | |
√ | √ | 55.1 | 58.7 | 62.6 | 65.4 | 62 | |
√ | √ | √ | 56 | 59.3 | 63.1 | 66 | 62.6 |
[1] |
王芳, 王海晏, 寇添, 等. 多维特征点空间的红外弱小目标检测方法[J]. 应用光学, 2020, 41(6):1268-1276.
doi: 10.5768/JAO202041.0606002 |
doi: 10.5768/JAO202041.0606002 |
|
[2] |
牛畅, 尹奎英, 黄银和. 无人机对地目标自动检测与跟踪技术[J]. 应用光学, 2020, 41(6): 1153-1160.
doi: 10.5768/JAO202041.0601003 |
doi: 10.5768/JAO202041.0601003 |
|
[3] |
杜鹏飞, 李小勇, 高雅丽. 多模态视觉语言表征学习研究综述[J]. 软件学报, 2021, 32(2): 327-348.
|
|
|
[4] |
|
[5] |
梁杰, 任君, 李磊, 等. 基于典型几何形状精确回归的机场跑道检测方法[J]. 兵工学报, 2020, 41(10): 2045-2054.
|
|
|
[6] |
|
[7] |
|
[8] |
doi: 10.1023/A:1019956318069 URL |
[9] |
doi: 10.1186/s40537-015-0036-x URL |
[10] |
|
[11] |
doi: 10.1109/TPAMI.2016.2577031 URL |
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
doi: 10.1109/TPAMI.2017.2699184 URL |
[23] |
doi: 10.1007/s11263-009-0275-4 URL |
[24] |
|
[25] |
doi: 10.1007/s11263-015-0816-y URL |
[1] | SU Sheng, GU Sen, SONG Zhiqiang, LIU Ping. Military Cockpit Color Design Method Based on Deep Representation Learning and Genetic Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1060-1069. |
[2] | LI Song, MA Zhuangzhuang, ZHANG Yunlin, SHAO Jinliang. Multi-agent Coverage Path Planning Based on Security Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(S2): 101-113. |
[3] | SUN Kai, ZHANG Cheng, ZHAN Tian, SU Di. Multi-View Stereo Reconstruction Network with Fusion Attention Mechanism and Multi-Layer Dynamic Deformation Convolution [J]. Acta Armamentarii, 0, (): 0-0. |
[4] | SUN Jianming, HAN Shengquan, SHEN Zicheng, WU Jinpeng. Binocular Human Pose and Distance Identification Based on Double Convolutional Chain [J]. Acta Armamentarii, 2022, 43(11): 2846-2854. |
[5] | LI Jinqing, LIU Zefei, MAN Zhenlong. Key Generation Method Based on Generative Adversarial Network and Its Application in Low-light-level Image Encryption [J]. Acta Armamentarii, 2022, 43(2): 337-344. |
[6] | WANG Ying-min, CUI Tao, ZHANG Fu-jun, DONG Tian-pu. Fault Diagnosis of Intake System of Diesel Engine Based on LOLIMOT [J]. Acta Armamentarii, 2017, 38(8): 1457-1468. |
[7] | TANG Xian-jin, ZHANG Qiu, ZOU Gang, WU Song, LIU Wei, YIN Rui. Prediction Research on Cutting Surface Roughness of PBX Based on RBF Neural Network [J]. Acta Armamentarii, 2014, 35(2): 200-206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||