Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (9): 3091-3104.doi: 10.12382/bgxb.2023.0607
Previous Articles Next Articles
KONG Xiangqing1,2,*(), LI Ruonan1, CHANG Yahui1, FU Ying3
Received:
2023-06-25
Online:
2023-10-24
Contact:
KONG Xiangqing
CLC Number:
KONG Xiangqing, LI Ruonan, CHANG Yahui, FU Ying. Numerical Simulation of Blast Resistance of Foam-filled Auxetic Honeycomb Sandwich Structures[J]. Acta Armamentarii, 2024, 45(9): 3091-3104.
Add to citation manager EndNote|Ris|BibTeX
部件 | 材料 | 密度/ (kg·m-3) | 弹性 模量/GPa | 泊松比 | 屈服应 力/MPa | 失效 应变 | C | P | 单轴抗 拉强度 | A0 | A2 | NOUT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
钢板 | G800HSS | 7850 | 223 | 0.3 | 789 | 0.2 | 3200 | 5 | ||||
AHSS | AA6061 | 2710 | 40.3 | 0.33 | 113 | 0.12 | ||||||
混凝土板 | 钢筋 | 7850 | 200 | 0.25 | 502 | 0.15 | 40.4 | 5 | ||||
混凝土板 | 混凝土 | 2400 | 0.1 | 0 | 0.04 | 0 | 2 |
Table 1 Material model parameters[4]
部件 | 材料 | 密度/ (kg·m-3) | 弹性 模量/GPa | 泊松比 | 屈服应 力/MPa | 失效 应变 | C | P | 单轴抗 拉强度 | A0 | A2 | NOUT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
钢板 | G800HSS | 7850 | 223 | 0.3 | 789 | 0.2 | 3200 | 5 | ||||
AHSS | AA6061 | 2710 | 40.3 | 0.33 | 113 | 0.12 | ||||||
混凝土板 | 钢筋 | 7850 | 200 | 0.25 | 502 | 0.15 | 40.4 | 5 | ||||
混凝土板 | 混凝土 | 2400 | 0.1 | 0 | 0.04 | 0 | 2 |
试验与 模拟 | H0/ mm | H1/ mm | H2/ mm | H3/ mm | L1/ mm | L2/ mm |
---|---|---|---|---|---|---|
试验 | 10.0 | 45.8 | 50.0 | 46.4 | 91.4 | 182.8 |
模拟 | 11.89 | 49.92 | 48.6 | 49.2 | 94.2 | 190.4 |
相对误差/% | 1.9 | 9.0 | 2.8 | 6.0 | 3.1 | 4.0 |
Table 2 Quantitative comparison of geometric parameters
试验与 模拟 | H0/ mm | H1/ mm | H2/ mm | H3/ mm | L1/ mm | L2/ mm |
---|---|---|---|---|---|---|
试验 | 10.0 | 45.8 | 50.0 | 46.4 | 91.4 | 182.8 |
模拟 | 11.89 | 49.92 | 48.6 | 49.2 | 94.2 | 190.4 |
相对误差/% | 1.9 | 9.0 | 2.8 | 6.0 | 3.1 | 4.0 |
结构 | 泡沫 密度/ (kg·m-3) | 比例 距离/ (m·kg-1/3) | 填充 材料 | 总能 量/kJ | 上面板 位移峰 值/mm | 背面板 位移峰 值/mm |
---|---|---|---|---|---|---|
AHSS | 0.064 | 37.4 | 100.11 | 18.75 | ||
FSS | 92 | 0.064 | 34.38 | 63.60 | 13.20 | |
FAHSS | 92 | 0.064 | 聚氨酯 泡沫 | 41.23 | 79.65 | 11.95 |
FAHSS | 92 | 0.064 | 聚氨酯 泡沫 | 38.52 | 79.65 | 9.95 |
FAHSS | 202 | 0.064 | 聚氨酯 泡沫 | 37.79 | 72.37 | 9.41 |
FAHSS | 358 | 0.064 | 聚氨酯 泡沫 | 37.95 | 65.80 | 8.68 |
FAHSS | 472 | 0.064 | 聚氨酯 泡沫 | 38.11 | 60.56 | 6.78 |
FAHSS | 92 | 0.064 | 聚氨酯 泡沫 | 38.53 | 79.33 | 9.95 |
FAHSS | 92 | 0.144 | 聚氨酯 泡沫 | 16.86 | 19.33 | 6.54 |
FAHSS | 92 | 0.433 | 聚氨酯 泡沫 | 13.35 | 7.66 | 3.83 |
FAHSS | 92 | 1.299 | 聚氨酯 泡沫 | 12.12 | 7.02 | 4.29 |
FAHSS | 92 | 0.064 | 热塑性聚 氨酯泡沫 | 39.27 | 45.17 | 6.77 |
Table 3 Calculated results
结构 | 泡沫 密度/ (kg·m-3) | 比例 距离/ (m·kg-1/3) | 填充 材料 | 总能 量/kJ | 上面板 位移峰 值/mm | 背面板 位移峰 值/mm |
---|---|---|---|---|---|---|
AHSS | 0.064 | 37.4 | 100.11 | 18.75 | ||
FSS | 92 | 0.064 | 34.38 | 63.60 | 13.20 | |
FAHSS | 92 | 0.064 | 聚氨酯 泡沫 | 41.23 | 79.65 | 11.95 |
FAHSS | 92 | 0.064 | 聚氨酯 泡沫 | 38.52 | 79.65 | 9.95 |
FAHSS | 202 | 0.064 | 聚氨酯 泡沫 | 37.79 | 72.37 | 9.41 |
FAHSS | 358 | 0.064 | 聚氨酯 泡沫 | 37.95 | 65.80 | 8.68 |
FAHSS | 472 | 0.064 | 聚氨酯 泡沫 | 38.11 | 60.56 | 6.78 |
FAHSS | 92 | 0.064 | 聚氨酯 泡沫 | 38.53 | 79.33 | 9.95 |
FAHSS | 92 | 0.144 | 聚氨酯 泡沫 | 16.86 | 19.33 | 6.54 |
FAHSS | 92 | 0.433 | 聚氨酯 泡沫 | 13.35 | 7.66 | 3.83 |
FAHSS | 92 | 1.299 | 聚氨酯 泡沫 | 12.12 | 7.02 | 4.29 |
FAHSS | 92 | 0.064 | 热塑性聚 氨酯泡沫 | 39.27 | 45.17 | 6.77 |
[1] |
汪维, 张舵, 卢芳云, 等. 钢筋混凝土楼板在爆炸荷载作用下破坏模式和抗爆性能分析[J]. 兵工学报, 2010, 31(增刊1):102-106.
|
|
|
[2] |
刘志东, 赵小华, 方宏远, 等. 高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应[J]. 爆炸与冲击, 2023, 43(2): 89-105.
|
|
|
[3] |
孙晓旺, 陶晓晓, 王显会, 等. 负泊松比蜂窝材料抗爆炸特性及优化设计研究[J]. 爆炸与冲击, 2020, 40(9): 66-76.
|
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
裴连政. 负泊松比夹芯板抗爆性能实验与仿真研究[D]. 大连: 大连理工大学, 2016.
|
|
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
李勇, 肖伟, 程远胜, 等. 冲击波与破片对波纹杂交夹层板的联合毁伤数值研究[J]. 爆炸与冲击, 2018, 38(2): 279-288.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
郁荣. 泡沫填充负泊松比结构的力学特性及在舷侧耐撞中的应用[D]. 武汉: 华中科技大学, 2021.
|
|
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
邵景龙. 带吸能层双钢板-混凝土组合墙板抗冲击及抗爆性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
|
[29] |
|
[30] |
|
[31] |
赵方成. 用LS-DYNA对钢筋混凝土柱破坏的仿真[D]. 兰州: 兰州理工大学, 2009.
|
|
|
[32] |
|
[33] |
张新春, 刘颖, 李娜. 具有负泊松比效应蜂窝材料的面内冲击动力学性能[J]. 爆炸与冲击, 2012, 32(5) 475-482.
|
|
|
[34] |
刘佳, 崔传安, 徐畅. 爆炸波在硬质聚氨酯泡沫中的衰减特性模拟[J]. 兵器装备工程学报, 2017, 38(9):164-167.
|
|
|
[35] |
张长仔. 空中近场爆炸载荷下泡沫铝波纹杂交夹层板动态响应研究[D]. 武汉: 华中科技大学, 2017.
|
|
|
[36] |
|
[37] |
|
[38] |
石少卿, 张湘冀, 刘颖芳, 等. 硬质聚氨酯泡沫塑料抗爆炸冲击作用的研究[J]. 振动与冲击, 2005, 24(5): 59-61,135.
|
|
|
[39] |
|
[1] | JIA Yining, WEN Yaoke, DONG Fangdong, QIN Bin, LI Zixuan, ZHENG Hao. Assessment of Protective Equipment Performance and Weapon Lethality Based on Human Anatomical Structure [J]. Acta Armamentarii, 2024, 45(8): 2774-2783. |
[2] | XIANG Xinmei, LUO Linlin, FU Zushu, HE Shizhu. Effect of Gradient Mode on Mechanical Properties of Miura-ori Metamaterials [J]. Acta Armamentarii, 2024, 45(2): 618-627. |
[3] | LIU Teng, ZHOU Xiongfei, WANG Chengquan, JING Lin. Wheel-rail Interaction Mechanism and Derailment Suppression Technology for Train Collision Accidents [J]. Acta Armamentarii, 2023, 44(S1): 67-78. |
[4] | NIU Cao, GU Guangxin, ZHU Lei, XU Hongbin, LI Zhengyu, ZHANG Weihong, CHEN Yongwei, WANG Bo, SHI Jianxiong, LI Yizhe. Finite Element Structural Analysis and Topology Optimization of a Vehicle-borne Missile Launching Cradle [J]. Acta Armamentarii, 2023, 44(2): 437-451. |
[5] | ZHAO Meng, DAI Kaida, XIANG Zhao, JIANG Tao, ZHAO Xiaosong, XU Yuxin. A Dynamics Model of PVC Foam Sandwich Panels under Close-in Blast Loading [J]. Acta Armamentarii, 2023, 44(12): 3884-3896. |
[6] | GAO Jun-qiang, TANG Xia-qing, HUANG Xiang-yuan, CHENG Xu-wei. FEA Method for Analysis of SINS Error Caused by Vibration Isolation System [J]. Acta Armamentarii, 2016, 37(9): 1570-1577. |
[7] | XU Xiao, FAN Li-xia, WANG Ya-ping, DONG Xiao-bin. Trans-scale Polycrystalline Finite Element Simulation of Radial Forging Process for Barrel and Prediction of Texture [J]. Acta Armamentarii, 2016, 37(7): 1180-1186. |
[8] | YANG Qing-tao, BAI Han-chen, ZHANG Tao, YANG Juan, WANG Hui. Design and Response Characteristics Analysis of a Fast-response Sensor for Temperature and Heat Flux Measurement [J]. Acta Armamentarii, 2014, 35(6): 927-934. |
[9] | YANG Dong-li, WANG Lin, YANG Jie, ZHAO Deng-hui. Research on Protective Performance of Foam Aluminum Composite Structure against Stress Wave [J]. Acta Armamentarii, 2014, 35(1): 96-101. |
[10] | QIN Guo-hua, ZHANG Yun-jian, YE Hai-chao. A Neural Network-Based Prediction Method of Machining Deformation for Thin-walled Workpiece [J]. Acta Armamentarii, 2013, 34(7): 840-845. |
[11] | LIU Jian-ning, JIANG Jun-biao, SHI Shun-xiang, MA Jia-jun, GUO Qiang. Optimization Analysis of Frequency Stabilization Servo System of Prisms Laser Gyro [J]. Acta Armamentarii, 2013, 34(7): 821-827. |
[12] | QU Kai, ZHANG Jie, ZHANG Xu-dong. Research on Effects of Ship Motion on Interface Fatigue Damage of Solid Rocket Motor [J]. Acta Armamentarii, 2012, 33(8): 986-990. |
[13] | LI Yun-long, ZHAO Chang-lu, ZHANG Fu-jun, LI Xin, WANG Xiang-qing. Aerodynamic Characteristics Experimental Study and Protective Performance Analysis for Intake and VentGrilles of Armored Vehicles [J]. Acta Armamentarii, 2012, 33(2): 129-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||