Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (11): 3320-3332.doi: 10.12382/bgxb.2023.0262
Special Issue: 群体协同与自主技术
Previous Articles Next Articles
TAO Junfeng1, LIU Hai’ou1,*(), GUAN Haijie1, CHEN Huiyan1, ZANG Zheng1,2
Received:
2023-03-28
Online:
2023-07-09
Contact:
LIU Hai’ou
CLC Number:
TAO Junfeng, LIU Hai’ou, GUAN Haijie, CHEN Huiyan, ZANG Zheng. Path Planning of Unmanned Tracked Vehicle Based on Terrain Traversability Estimation[J]. Acta Armamentarii, 2023, 44(11): 3320-3332.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
车辆行驶速度v/(km·h-1) | 5 |
节点扩展半径上界Rmax/m | 3 |
节点扩展半径下界Rmin/m | 1.2 |
无梯度迭代平滑thresh/m | 0.0001 |
自适应采样smin/m | 0.3 |
自适应采样smax/m | 5 |
自适应采样κm/m-1 | 0.02 |
自适应采样κM/m-1 | 0.2 |
A*距离代价权重ωm | 10 |
A*可通行度代价权重ωi | 0.1 |
无梯度平滑路径长度代价权重ωs | 10 |
无梯度平滑可通行度代价权重ωt | 0.1 |
横向采样步长step/m | 0.2 |
可通行走廊最大宽度bw/m | 4 |
参考线偏差代价权重ωd | 0.01 |
平滑性代价曲率项权重ωκ | 20 |
平滑性代价曲率变化率项权重ωμ | 100 |
终点状态横向位置允许偏差Δl/m | 0.2 |
终点状态航向角允许偏差Δθ/(°) | 5 |
曲率上界κmax | 0.2 |
曲率变化率上界κ'max | 0.05 |
可通行度检测pr | 0.5 |
Table 1 Experimental parameters
参数 | 数值 |
---|---|
车辆行驶速度v/(km·h-1) | 5 |
节点扩展半径上界Rmax/m | 3 |
节点扩展半径下界Rmin/m | 1.2 |
无梯度迭代平滑thresh/m | 0.0001 |
自适应采样smin/m | 0.3 |
自适应采样smax/m | 5 |
自适应采样κm/m-1 | 0.02 |
自适应采样κM/m-1 | 0.2 |
A*距离代价权重ωm | 10 |
A*可通行度代价权重ωi | 0.1 |
无梯度平滑路径长度代价权重ωs | 10 |
无梯度平滑可通行度代价权重ωt | 0.1 |
横向采样步长step/m | 0.2 |
可通行走廊最大宽度bw/m | 4 |
参考线偏差代价权重ωd | 0.01 |
平滑性代价曲率项权重ωκ | 20 |
平滑性代价曲率变化率项权重ωμ | 100 |
终点状态横向位置允许偏差Δl/m | 0.2 |
终点状态航向角允许偏差Δθ/(°) | 5 |
曲率上界κmax | 0.2 |
曲率变化率上界κ'max | 0.05 |
可通行度检测pr | 0.5 |
MSE | MAE | RMSE | R |
---|---|---|---|
0.0005 | 0.0197 | 0.0236 | 0.8450 |
Table 2 Statistical parameters of Cp and C
MSE | MAE | RMSE | R |
---|---|---|---|
0.0005 | 0.0197 | 0.0236 | 0.8450 |
规划方法 | 时间/ ms | 平均俯仰角/ ((°)·m-1) | 平均侧倾角/ ((°)·m-1)) | 平均曲率/ m-1 |
---|---|---|---|---|
本文方法 | 65 | 0.4942 | 1.0089 | 0.0332 |
文献[6]方法 | 105 | 2.4772 | 3.3869 | 0.0283 |
Table 3 Comparison of planned route indicators of C2
规划方法 | 时间/ ms | 平均俯仰角/ ((°)·m-1) | 平均侧倾角/ ((°)·m-1)) | 平均曲率/ m-1 |
---|---|---|---|---|
本文方法 | 65 | 0.4942 | 1.0089 | 0.0332 |
文献[6]方法 | 105 | 2.4772 | 3.3869 | 0.0283 |
[1] |
陈慧岩, 张玉. 军用地面无人机动平台技术发展综述[J]. 兵工学报, 2014, 35(10): 1696-1706.
doi: 10.3969/j.issn.1000-1093.2014.10.026 |
|
|
[2] |
doi: 10.1109/TITS.6979 URL |
[3] |
doi: 10.1002/rob.v26:4 URL |
[4] |
|
[5] |
|
[6] |
doi: 10.1109/LSP.2016. URL |
[7] |
|
[8] |
doi: 10.17531/ein URL |
[9] |
|
[10] |
|
[11] |
|
[12] |
袁夏, 赵春霞. 一种激光雷达可通行区域提取算法[J]. 兵工学报, 2010, 31(12): 1702-1707.
|
|
|
[13] |
doi: 10.3390/s19112577 URL |
[14] |
黄庭鸿, 聂卓赟, 王庆国, 等. 基于区块自适应特征融合的图像实时语义分割[J]. 自动化学报, 2021, 47(5): 1137-1148.
|
|
|
[15] |
刘忠泽, 陈慧岩, 崔星, 等. 无人平台越野环境下同步定位与地图创建[J]. 兵工学报, 2019, 40(12): 2399-2406.
doi: 10.3969/j.issn.1000-1093.2019.12.002 |
doi: 10.3969/j.issn.1000-1093.2019.12.002 |
|
[16] |
彭晓燕, 谢浩, 黄晶. 无人驾驶汽车局部路径规划算法研究[J]. 汽车工程, 2020, 42(1):1-10.
|
|
|
[17] |
周孝添, 任宏斌, 苏波, 等. 基于微分平坦的分层轨迹规划算法[J]. 兵工学报, 2023, 44(2): 394-405.
doi: 10.12382/bgxb.2021.0756 |
doi: 10.12382/bgxb.2021.0756 |
|
[18] |
邓海鹏, 麻斌, 赵海光, 等. 自主驾驶车辆紧急避障的路径规划与轨迹跟踪控制[J]. 兵工学报, 2020, 41(3): 585-594.
doi: 10.3969/j.issn.1000-1093.2020.03.020 |
doi: 10.3969/j.issn.1000-1093.2020.03.020 |
|
[19] |
doi: 10.1016/j.ymssp.2015.10.021 URL |
[20] |
|
[21] |
刘龙龙, 陈慧岩, 刘海鸥, 等. 基于拓扑路网的多挡无人履带平台路径重规划[J]. 兵工学报, 2023, 44(1): 279-289.
doi: 10.12382/bgxb.2021.0827 |
doi: 10.12382/bgxb.2021.0827 |
|
[22] |
王博洋, 关海杰, 龚建伟, 等. 面向异构履带车辆的统一运动规划方法[J]. 兵工学报, 2022, 43(2): 241-251.
|
doi: 10.3969/j.issn.1000-1093.2022.02.001 |
|
[23] |
田洪清, 王建强, 黄荷叶, 等. 越野环境下基于势能场模型的智能车概率图路径规划方法[J]. 兵工学报, 2021, 42(7): 1496-1505.
|
|
|
[24] |
|
[25] |
|
[26] |
doi: 10.1007/s12532-020-00179-2 |
[1] | LU Ying, PANG Lichen, CHEN Yusi, SONG Wanying, FU Yanfang. A Swarm Intelligence Algorithm for UAV Path Planning in Urban Warfare [J]. Acta Armamentarii, 2023, 44(S2): 146-156. |
[2] | LI Song, MA Zhuangzhuang, ZHANG Yunlin, SHAO Jinliang. Multi-agent Coverage Path Planning Based on Security Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(S2): 101-113. |
[3] | XU Peng, XING Boyang, LIU Yufei, LI Yongyao, ZENG Yi, ZHENG Dongdong. Anti-disturbance Composite Controller Design of Quadruped Robot Based on Extended State Observer and Model Predictive Control Technique [J]. Acta Armamentarii, 2023, 44(S2): 12-21. |
[4] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[5] | YIN Yiyi, WANG Xiaofang, ZHOU Jian. Q-Learning-based Multi-UAV Cooperative Path Planning Method [J]. Acta Armamentarii, 2023, 44(2): 484-495. |
[6] | ZHOU Xiaotian, REN Hongbin, SU Bo, QI Zhiquan, WANG Yang. Hierarchical Trajectory Planning Algorithm based on Differential Flatness [J]. Acta Armamentarii, 2023, 44(2): 394-405. |
[7] | FU Jinbo, ZHANG Dong, WANG Mengyang, ZHAO Junmin. Unmanned Aerial Vehicle Path Planning for Improved Target Positioning Accuracy [J]. Acta Armamentarii, 2023, 44(11): 3394-3406. |
[8] | WANG Kang, SI Peng, CHEN Li, LI Zhongxin, WU Zhilin. 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm [J]. Acta Armamentarii, 2023, 44(11): 3382-3393. |
[9] | TANG Zeyue, LIU Haiou, XUE Mingxuan, CHEN Huiyan, GONG Xiaojie, TAO Junfeng. Trajectory Tracking Control of Dual Independent Electric Drive Unmanned Tracked Vehicle Based on MPC-MFAC [J]. Acta Armamentarii, 2023, 44(1): 129-139. |
[10] | ZHANG Lei, FANG Yang-wang, CHAI Dong, YONG Xiao-ju. Cruise Missile Path Planning Based on Improved Quantum Evolutionary Algorithm [J]. Acta Armamentarii, 2014, 35(11): 1820-1827. |
[11] | FU Yang-guang, ZHOU Cheng-ping2, HU Han-ping2. Research on Differential Evolution Algorithm for Path Planning for Unmanned Aerial Vehicle inOcean Environment [J]. Acta Armamentarii, 2012, 33(3): 295-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||