Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (2): 671-683.doi: 10.12382/bgxb.2022.0675
Previous Articles Next Articles
XIONG Jiamei1, WANG Yongzhen1, YAN Xuefeng1,2,*(), WEI Mingqiang1
Received:
2022-07-27
Online:
2024-02-29
Contact:
YAN Xuefeng
CLC Number:
XIONG Jiamei, WANG Yongzhen, YAN Xuefeng, WEI Mingqiang. An Algorithm of Battlefield Image Desmoking Based on Semantic Guidance and Contrastive Learning[J]. Acta Armamentarii, 2024, 45(2): 671-683.
Add to citation manager EndNote|Ris|BibTeX
数据集 | 迁移后的AuthESI↓ | NIQE↓ |
---|---|---|
HSTS | 4.9600 | 4.962 |
真实战场含烟数据集 | 4.3442 | 3.452 |
筛选前的合成数据集 | 5.0339 | 3.746 |
SBSI | 4.5824 | 3.503 |
Table 1 Quantitative evaluation of the quality on SBSI dataset
数据集 | 迁移后的AuthESI↓ | NIQE↓ |
---|---|---|
HSTS | 4.9600 | 4.962 |
真实战场含烟数据集 | 4.3442 | 3.452 |
筛选前的合成数据集 | 5.0339 | 3.746 |
SBSI | 4.5824 | 3.503 |
去烟算法 | PSNR/dB↑ | SSIM↑ | CIEDE2000↓ |
---|---|---|---|
DCP | 14.93 | 0.7796 | 13.3102 |
DSR-Net | 20.19 | 0.8666 | 7.8871 |
AOD-Net | 21.08 | 0.8787 | 6.8954 |
AttentiveGAN | 21.54 | 0.8897 | 6.8333 |
LD-Net | 20.94 | 0.9018 | 6.8645 |
GSR | 24.45 | 0.9194 | 5.5566 |
PSD | 22.47 | 0.9178 | 6.0656 |
YOLY | 19.42 | 0.8502 | 9.7336 |
本文算法 | 30.14 | 0.9513 | 4.9969 |
Table 3 Quantitative evaluation of different desmoking algorithms on SBSI dataset
去烟算法 | PSNR/dB↑ | SSIM↑ | CIEDE2000↓ |
---|---|---|---|
DCP | 14.93 | 0.7796 | 13.3102 |
DSR-Net | 20.19 | 0.8666 | 7.8871 |
AOD-Net | 21.08 | 0.8787 | 6.8954 |
AttentiveGAN | 21.54 | 0.8897 | 6.8333 |
LD-Net | 20.94 | 0.9018 | 6.8645 |
GSR | 24.45 | 0.9194 | 5.5566 |
PSD | 22.47 | 0.9178 | 6.0656 |
YOLY | 19.42 | 0.8502 | 9.7336 |
本文算法 | 30.14 | 0.9513 | 4.9969 |
去雾算法 | NIQE↓ | σ↓ | ↑ |
---|---|---|---|
DCP | 3.443 | 0.0003 | 1.1893 |
DSR-Net | 3.678 | 0.0003 | 1.2593 |
AOD-Net | 3.590 | 0.0016 | 1.1766 |
AttentiveGAN | 5.211 | 0.0088 | 1.3001 |
LDNet | 3.675 | 0.0004 | 1.1182 |
GSR | 5.409 | 0.0003 | 1.2732 |
PSD | 3.580 | 0.0003 | 1.2565 |
YOLY | 3.511 | 0.0110 | 1.8054 |
本文算法 | 3.422 | 0.0001 | 1.3793 |
Table 5 Quantitative evaluation of different desmoking algorithms on the real-world battlefield smok-containing dataset
去雾算法 | NIQE↓ | σ↓ | ↑ |
---|---|---|---|
DCP | 3.443 | 0.0003 | 1.1893 |
DSR-Net | 3.678 | 0.0003 | 1.2593 |
AOD-Net | 3.590 | 0.0016 | 1.1766 |
AttentiveGAN | 5.211 | 0.0088 | 1.3001 |
LDNet | 3.675 | 0.0004 | 1.1182 |
GSR | 5.409 | 0.0003 | 1.2732 |
PSD | 3.580 | 0.0003 | 1.2565 |
YOLY | 3.511 | 0.0110 | 1.8054 |
本文算法 | 3.422 | 0.0001 | 1.3793 |
模型 | 基础模型 | V1模型 | V2模型 | V3模型 |
---|---|---|---|---|
感知对比学习损失 | × | √ | × | √ |
语义引导 | × | × | √ | √ |
指标 | 基础模型 | V1模型 | V2模型 | V3模型 |
PSNR/dB↑ | 29.06 | 29.91 | 30.04 | 30.14 |
SSIM↑ | 0.928 | 0.951 | 0.944 | 0.951 |
CIEDE2000↓ | 5.942 | 6.089 | 5.064 | 4.997 |
Table 6 Ablation result for SCLGAN with semantic guidance and contrastive learning
模型 | 基础模型 | V1模型 | V2模型 | V3模型 |
---|---|---|---|---|
感知对比学习损失 | × | √ | × | √ |
语义引导 | × | × | √ | √ |
指标 | 基础模型 | V1模型 | V2模型 | V3模型 |
PSNR/dB↑ | 29.06 | 29.91 | 30.04 | 30.14 |
SSIM↑ | 0.928 | 0.951 | 0.944 | 0.951 |
CIEDE2000↓ | 5.942 | 6.089 | 5.064 | 4.997 |
模型 | PSNR/dB↑ | SSIM↑ | CIEDE2000↓ |
---|---|---|---|
CA | 27.15 | 0.930 | 6.440 |
FA | 30.14 | 0.951 | 4.997 |
CBAM | 29.38 | 0.951 | 5.365 |
FA+残差块-FA结构 | 29.40 | 0.949 | 6.883 |
FA+残差块-CA结构 | 29.59 | 0.950 | 5.384 |
Table 7 Ablation results of attention mechanism module
模型 | PSNR/dB↑ | SSIM↑ | CIEDE2000↓ |
---|---|---|---|
CA | 27.15 | 0.930 | 6.440 |
FA | 30.14 | 0.951 | 4.997 |
CBAM | 29.38 | 0.951 | 5.365 |
FA+残差块-FA结构 | 29.40 | 0.949 | 6.883 |
FA+残差块-CA结构 | 29.59 | 0.950 | 5.384 |
损失函数 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|
L1损失 | √ | × | × | √ | √ | × | √ |
MS-SSIM损失 | × | √ | × | √ | × | √ | √ |
对比正则损失 | × | × | √ | × | √ | √ | √ |
指标 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
PSNR/dB↑ | 27.67 | 22.41 | 11.33 | 27.39 | 28.02 | 28.40 | 30.14 |
SSIM↑ | 0.909 | 0.465 | 0.085 | 0.899 | 0.867 | 0.909 | 0.951 |
CIEDE2000↓ | 5.772 | 9.915 | 29.104 | 5.985 | 6.958 | 8.444 | 4.997 |
Table 8 Ablation result of each loss
损失函数 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
---|---|---|---|---|---|---|---|
L1损失 | √ | × | × | √ | √ | × | √ |
MS-SSIM损失 | × | √ | × | √ | × | √ | √ |
对比正则损失 | × | × | √ | × | √ | √ | √ |
指标 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
PSNR/dB↑ | 27.67 | 22.41 | 11.33 | 27.39 | 28.02 | 28.40 | 30.14 |
SSIM↑ | 0.909 | 0.465 | 0.085 | 0.899 | 0.867 | 0.909 | 0.951 |
CIEDE2000↓ | 5.772 | 9.915 | 29.104 | 5.985 | 6.958 | 8.444 | 4.997 |
模型 | 基础模型 | V1模型 | V2模型 | V3模型 |
---|---|---|---|---|
感知对比学习损失 | × | √ | × | √ |
语义引导 | × | × | √ | √ |
指标 | 基础模型 | V1模型 | V2模型 | V3模型 |
NIQE↓ | 3.045 | 3.041 | 3.026 | 3.014 |
σ↓ | 0.0002 | 0.0003 | 0.0002 | 0.0001 |
↑ | 1.1020 | 1.1204 | 1.2323 | 1.1691 |
Table 9 Ablation result for SCLGAN with semantic guidance and contrastive learning on real-world battlefield smok-cintaining dataset
模型 | 基础模型 | V1模型 | V2模型 | V3模型 |
---|---|---|---|---|
感知对比学习损失 | × | √ | × | √ |
语义引导 | × | × | √ | √ |
指标 | 基础模型 | V1模型 | V2模型 | V3模型 |
NIQE↓ | 3.045 | 3.041 | 3.026 | 3.014 |
σ↓ | 0.0002 | 0.0003 | 0.0002 | 0.0001 |
↑ | 1.1020 | 1.1204 | 1.2323 | 1.1691 |
去烟算法 | 平均运行时间/s |
---|---|
DCP | 1.0389 |
DSR-Net | 0.0692 |
AOD-Net | 0.0685 |
AttentiveGAN | 0.1431 |
LD-Net | 0.0954 |
GSR | 0.1647 |
PSD | 0.5389 |
YOLY | 41.5037 |
本文算法 | 0.0553 |
Table 10 Average running time of different algorithms
去烟算法 | 平均运行时间/s |
---|---|
DCP | 1.0389 |
DSR-Net | 0.0692 |
AOD-Net | 0.0685 |
AttentiveGAN | 0.1431 |
LD-Net | 0.0954 |
GSR | 0.1647 |
PSD | 0.5389 |
YOLY | 41.5037 |
本文算法 | 0.0553 |
[1] |
李力, 金伟其, 黄有为, 等. 一种低对比度可见光超视距成像的实时图像增强方法[J]. 兵工学报, 2010, 31(2): 242-247.
|
|
|
[2] |
doi: 10.1007/s11760-019-01442-3 |
[3] |
李庆忠, 刘清. 基于小波变换的低照度图像自适应增强算法[J]. 中国激光, 2015, 42(2): 272-278.
|
|
|
[4] |
李春明, 姜雨彤, 宋海平, 等. 基于光学厚度代理模型的雾浓度估计及图像去雾[J]. 兵工学报, 2019, 40(7):1425-1433.
doi: 10.3969/j.issn.1000-1093.2019.07.012 |
doi: 10.3969/j.issn.1000-1093.2019.07.012 |
|
[5] |
姜雨彤, 宋海平, 王光辉. 基于质量评价最优的无人机航拍图像去雾方法[J]. 兵工学报, 2022, 43(1):148-158.
doi: 10.3969/j.issn.1000-1093.2022.01.016 |
doi: 10.3969/j.issn.1000-1093.2022.01.016 |
|
[6] |
doi: 10.1109/TPAMI.2010.168 URL |
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
doi: 10.1007/s10694-021-01096-z |
[13] |
|
[14] |
|
[15] |
|
[16] |
doi: 10.1609/aaai.v34i07.6865 URL |
[17] |
doi: 10.1109/TPAMI.2017.2699184 URL |
[18] |
|
[19] |
doi: 10.1109/LSP.2012.2227726 URL |
[20] |
doi: 10.1109/TIP.83 URL |
[21] |
doi: 10.1109/TITS.2022.3170328 URL |
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
doi: 10.1109/tip.2003.819861 pmid: 15376593 |
[29] |
|
[30] |
doi: 10.1109/TIP.2021.3116790 URL |
[31] |
|
[32] |
doi: 10.1007/s11263-021-01431-5 |
[33] |
|
[34] |
|
[1] | SU Di, WANG Shaobo, ZHANG Cheng, CHEN Zhisheng, LIU Chaoyue. Projectile-borne Image Deblurring Algorithm Based on Generative Adversarial Networks [J]. Acta Armamentarii, 2024, 45(3): 855-863. |
[2] | DUAN Yichen, SHEN Xiaohong, WANG Haiyan, YAN Yongsheng. An Anti-decoy Jamming Method of Ship-radiated Noise Signals Based on Unsupervised Time-frequency Information Fusion [J]. Acta Armamentarii, 2023, 44(9): 2722-2731. |
[3] | YAN Yuwen, BI Wenhao, ZHANG An, ZHANG Baichuan. Task Allocation Method of UAV Clusters Based on Sequence Generative Adversarial Network [J]. Acta Armamentarii, 2023, 44(9): 2672-2684. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||